Space

August 5, 2013

NASA’s Hubble finds telltale fireball after gamma ray burst

nasa-hubble

NASA’s Hubble Space Telescope recently provided the strongest evidence yet that short-duration gamma ray bursts are produced by the merger of two small, super-dense stellar objects.

The evidence is in the detection of a new kind of stellar blast called a kilonova, which results from the energy released when a pair of compact objects crash together. Hubble observed the fading fireball from a kilonova last month, following a short gamma ray burst in a galaxy almost 4 billion light-years from Earth. A kilonova had been predicted to accompany a short-duration GRB, but had not been seen before.

“This observation finally solves the mystery of the origin of short gamma ray bursts,” said Nial Tanvir of the University of Leicester in the United Kingdom. Tanvir lead a team of researchers using Hubble to study the recent short-duration GRB. “Many astronomers, including our group, have already provided a great deal of evidence that long-duration gamma ray bursts (those lasting more than two seconds) are produced by the collapse of extremely massive stars. But we only had weak circumstantial evidence that short bursts were produced by the merger of compact objects. This result now appears to provide definitive proof supporting that scenario.”

The team’s results appeared Aug. 3 in a special online edition of the journal Nature.

A kilonova is about 1,000 times brighter than a nova, which is caused by the eruption of a white dwarf.  The self-detonation of a massive star, a supernova, can be as much as 100 times brighter than a kilonova. Gamma ray bursts are mysterious flashes of intense high-energy radiation that appear from random directions in space. Short-duration blasts last at most a few seconds, but they sometimes produce faint afterglows in visible and near-infrared light that continue for several hours or days. The afterglows have helped astronomers determine that GRBs lie in distant galaxies.

Astrophysicists have predicted short-duration GRBs are created when a pair of super-dense neutron stars in a binary system spiral together. This event happens as the system emits gravitational radiation, creating tiny waves in the fabric of space-time. The energy dissipated by the waves causes the two stars to sweep closer together. In the final milliseconds before the explosion, the two stars merge into a death spiral that kicks out highly radioactive material. This material heats up and expands, emitting a burst of light.

In a recent science paper Jennifer Barnes and Daniel Kasen of the University of California at Berkeley and the Lawrence Berkeley National Laboratory presented new calculations predicting how kilonovas should look. They predicted the same hot plasma producing the radiation also will block the visible light, causing the gusher of energy from the kilonova to flood out in near-infrared light over several days.

An unexpected opportunity to test this model came June 3 when NASA’ s Swift space telescope picked up the extremely bright gamma ray burst, cataloged as GRB 130603B. Although the initial blast of gamma rays lasted just one-tenth of a second, it was roughly 100 billion times brighter than the subsequent kilonova flash.

From June 12-13, Hubble searched the location of the initial burst, spotting a faint red object. An independent analysis of the data from another research team confirmed the detection. Subsequent Hubble observations July 3 revealed the source had faded away, therefore providing the key evidence the infrared glow was from an explosion accompanying the merger of two objects.

 




All of this week's top headlines to your email every Friday.


 
 

 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 
 

Lockheed Martin wins Alaska spaceport bid

ANCHORAGE, Alaska – The state-owned space agency Dec. 12 named Lockheed Martin the winner of a bidding process to reconfigure a launch pad to accommodate larger rockets than what the Kodiak Launch Complex can currently handle. Lockheed Martin beat out three other bidders to reconfigure launch pad one at the Kodiak site, officials with the...
 

 
LM-orion-recover

Orion spacecraft heading home after successful at-sea recovery by U.S. Navy, NASA

Engineers are getting their first look at the Lockheed Martin-built Orion spacecraft following its successful flight test and recovery Dec. 5. With the spacecraft recovered from the Pacific and brought to port in San Diego, tec...
 
 
Northrop Grumman image

Northrop Grumman to supply navigation system for SBIRS GEO-5 satellite

Northrop Grumman image Artist’s rendering of the Space-Based Infrared System’s Geosynchronous Earth Orbit satellite.   WOODLAND HILLS, Calif. – Northrop Grumman has been selected by prime contractor Lock...
 
 
boeing-spacecraft

Boeing CST-100 spacecraft moves another step closer to flight

Boeing and NASA recently completed the Ground Segment Critical Design Review and set the baseline design for the company’s Commercial Crew Transportation System, moving a step closer to the planned early 2017 voyage to th...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>