Defense

August 7, 2013

Collaboration leads to new rocket propulsion technology

army-propulsion1
 

A team of Army researchers developed a new gel-propellant engine called the vortex engine.

Michael Nusca, Ph.D., Robert Michaels and Nathan Mathis were recently recognized by the Department of the Army with a 2012 Army Research and Development Outstanding Collaboration Award, or RDA, for their work titled, “Use of Computational Fluid Dynamics in the Development and Testing of Controllable Thrust Gel Bipropellant Rocket Engines for Tactical Missiles.”

Nusca, a researcher in Army Research Laboratory, or ARL’s, Propulsion Science Branch at Aberdeen Proving Ground, explained the new technology.

“Gelled, hypergolic propellants are swirled with the combustion chamber to promote mixing and combustion,” Nusca said. “Traditionally, Army missiles used on the battlefield utilize solid propellant in the rocket engine. These engines require an ignition source and once initiated cannot be throttled without special hardware, both of which add weight to the engine. Liquid hypergolic propellants ignite on contact without an igniter and the engine can be throttled by regulating the propellant flow. In addition, if the propellants are gelled, the storage tanks have been shown to be insensitive to attack, unlike liquids that can explode when the container is punctured.”

This new engine was developed with Michaels and Mathis, both researchers at the Aviation Missile Research, Development and Engineering Center, which is one of the U.S. Army Research, Development and Engineering Command’s, or AMRDEC, elements located at Redstone Arsenal, Ala.

“At AMRDEC, the propellants, injection systems and engines were developed and test fired, while at ARL the physics of propellant injection, combustion and engine operation were modeled using supercomputers,” Nusca said. This modeling included both current engine and fuel designs as well as proposals for design alternatives aimed at enhanced performance. The synergism of research between the two labs proved the technology worked according to design.”

“This award recognized the cooperative effort between the ARL-WMRD, or Weapons and Materials Research Directorate, and the AMRDEC-WDI, or Weapons Development and Integration, in maturing a new rocket engine technology for Army tactical missiles.”

army-propulsion3

Commenting on the impact this body of work could have on the operational Army, Nusca said, “This technology has the potential for game-changing impacts on the future of small, selectable thrust rocket engines for Army tactical missiles, as the main propulsion system, as well as strategic missiles as a course correction system. AMRDEC and the Program Executive Officer for Missiles and Space have direct uses for this technology.”

The primary use and application of this technology has been on the battlefield.

“Eventually the soldier will have access to a tactical missile on the battlefield that can be used for a variety of missions due to the selectable thrust capability,” Nusca said.

Nusca believes this technology has other applications that will also produce significant results for missile systems.

“The next step for this type of technology would be a full-scale flight test of the vortex engine at AMRDEC for a particular missile system. This test would extend the successful engine test-stand firings and computer modeling and demonstrate increased missile range and thrust modulation in flight,” Nusca said.

The RDA awards recognize outstanding scientific and engineering achievements and technical leadership throughout the Army’s commands, laboratories, and research, development and engineering centers.

Nusca was thrilled to have received the recognition by the Army for the team’s work.

“Receiving this RDA for cooperation makes me feel proud to be a part of ARL and AMRDEC efforts to produce basic and applied research that is increasingly relevant to the Soldier to whom we owe the best battlefield technology that we develop,” Nusca said.

 




All of this week's top headlines to your email every Friday.


 
 

 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 

AF Test Pilot School applications due in June

The 2015 Air Force Test Pilot School selection board will convene July 20-24 to consider candidates for July 2016 and January 2017 classes. Applications are due to the Air Force Personnel Center by June 5. The board will select applicants for fighter, multi-engine aircraft, helicopter and remotely piloted aircraft pilot, combat systems officers – to...
 

 
Air Force photograph by A1C Stephen G. Eigel

Last MC-130P Combat Shadows in the Pacific retire

Air Force photograph by A1C Stephen G. Eigel An MC-130P Combat Shadow awaits its final checks on Kadena Air Base, Japan, before departing for the “boneyard” at Davis-Monthan Air Force Base, Ariz., April 15, 2015. The 17th S...
 
 
F22-hero1

F-22 test squadron recognizes decorated squadron member, Vietnam hero

Air Force photograph by Jet Fabara William Freckleton, 412th Range Squadron lead F-22 range control officer, poses before his F-16D incentive flight April 21. Freckleton is the only decorated Vietnam veteran at the 411th Flight...
 
 
Courtesy photograph

AFRL redesigns mock UAV, ‘Surrogate Predator’

Courtesy photograph An enhanced Surrogate Predator 3 is prepared for takeoff. Intelligence, surveillance and reconnaissance sensors were added to the Cessna 182 so it can mimic a Predator unmanned aerial vehicle. Air Force Rese...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>