Defense

August 7, 2013

Collaboration leads to new rocket propulsion technology

army-propulsion1
 

A team of Army researchers developed a new gel-propellant engine called the vortex engine.

Michael Nusca, Ph.D., Robert Michaels and Nathan Mathis were recently recognized by the Department of the Army with a 2012 Army Research and Development Outstanding Collaboration Award, or RDA, for their work titled, “Use of Computational Fluid Dynamics in the Development and Testing of Controllable Thrust Gel Bipropellant Rocket Engines for Tactical Missiles.”

Nusca, a researcher in Army Research Laboratory, or ARL’s, Propulsion Science Branch at Aberdeen Proving Ground, explained the new technology.

“Gelled, hypergolic propellants are swirled with the combustion chamber to promote mixing and combustion,” Nusca said. “Traditionally, Army missiles used on the battlefield utilize solid propellant in the rocket engine. These engines require an ignition source and once initiated cannot be throttled without special hardware, both of which add weight to the engine. Liquid hypergolic propellants ignite on contact without an igniter and the engine can be throttled by regulating the propellant flow. In addition, if the propellants are gelled, the storage tanks have been shown to be insensitive to attack, unlike liquids that can explode when the container is punctured.”

This new engine was developed with Michaels and Mathis, both researchers at the Aviation Missile Research, Development and Engineering Center, which is one of the U.S. Army Research, Development and Engineering Command’s, or AMRDEC, elements located at Redstone Arsenal, Ala.

“At AMRDEC, the propellants, injection systems and engines were developed and test fired, while at ARL the physics of propellant injection, combustion and engine operation were modeled using supercomputers,” Nusca said. This modeling included both current engine and fuel designs as well as proposals for design alternatives aimed at enhanced performance. The synergism of research between the two labs proved the technology worked according to design.”

“This award recognized the cooperative effort between the ARL-WMRD, or Weapons and Materials Research Directorate, and the AMRDEC-WDI, or Weapons Development and Integration, in maturing a new rocket engine technology for Army tactical missiles.”

army-propulsion3

Commenting on the impact this body of work could have on the operational Army, Nusca said, “This technology has the potential for game-changing impacts on the future of small, selectable thrust rocket engines for Army tactical missiles, as the main propulsion system, as well as strategic missiles as a course correction system. AMRDEC and the Program Executive Officer for Missiles and Space have direct uses for this technology.”

The primary use and application of this technology has been on the battlefield.

“Eventually the soldier will have access to a tactical missile on the battlefield that can be used for a variety of missions due to the selectable thrust capability,” Nusca said.

Nusca believes this technology has other applications that will also produce significant results for missile systems.

“The next step for this type of technology would be a full-scale flight test of the vortex engine at AMRDEC for a particular missile system. This test would extend the successful engine test-stand firings and computer modeling and demonstrate increased missile range and thrust modulation in flight,” Nusca said.

The RDA awards recognize outstanding scientific and engineering achievements and technical leadership throughout the Army’s commands, laboratories, and research, development and engineering centers.

Nusca was thrilled to have received the recognition by the Army for the team’s work.

“Receiving this RDA for cooperation makes me feel proud to be a part of ARL and AMRDEC efforts to produce basic and applied research that is increasingly relevant to the Soldier to whom we owe the best battlefield technology that we develop,” Nusca said.

 




All of this week's top headlines to your email every Friday.


 
 

 
Army photograph by SFC Walter E. van Ochten

U.S., Ukraine, Romania, Bulgaria train together at Rapid Trident 2015

Army photograph by SFC Walter E. van Ochten U.S. soldiers, of the 3rd Platoon, 615th Military Police Company, 709th Military Police Battalion, react as they conduct reacting to contact training as part of their situational trai...
 
 
Army photograph by Sgt. Juana M. Nesbitt

Estonian, US forces receive new jump wings

Army photograph by Sgt. Juana M. Nesbitt Pvt. Kalmer Simohov, of Parnu, a volunteer with the Estonian Defense League, receives his U.S. Army Airborne wings following the joint airborne operations exercise at a drop zone in Nurm...
 
 
Air Force photograph by SrA. Thomas Spangler

Red Flag offers B-52 crews training that ‘can’t be beat’

Air Force photograph by A1 Class Rachel Loftis A B-52 Stratofortress assigned to the 69th Bomb Squadon, Minot Air Force Base, N.D., taxis for take off during Red Flag 15-3 at Nellis Air Force Base, Nev., July 15. The B-52 is a ...
 

 
navy-decommission3

Final West Coast frigate, USS Gary, decommissioned

Navy photograph by POCS Donnie W. Ryanl The guided-missile frigate USS Gary (FFG 51) arrives at Naval Base San Diego after completing its final deployment before decomissioning. During the seven-month deployment Gary operated i...
 
 
Air Force photographby A1C Mikaley Towle

‘Thunder’ rolls at Fort Irwin

Air Force photographby A1C Mikaley Towle An Airman assigned to the 22nd Special Tactics Squadron, Joint Base Lewis-McChord, Wash., observes as an A-10 Thunderbolt II circle before landing in support of Green Flag West 15-08.5 o...
 
 
DT2

‘Blue’ forces power through Red Flag 15-3

U.S. Air Force photo by Staff Sgt. Siuta B. Ika An F-16 Fighting Falcon assigned to the 480th Fighter Squadron, Spangdahlem Air Base, Germany, flies during a Red Flag 15-3 sortie at Nellis Air Force Base, Nev., July 17. Red Fla...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>