Defense

August 14, 2013

Army Research Lab, Purdue explore 3-D printing to fix deployed equipment, cut maintenance costs

T'Jae Gibson
Aberdeen Proving Ground, Md.

New technology being developed by research engineers at the U.S. Army Research Laboratory and Purdue University will soon help just about any soldier deployed in far-off locations to immediately spot and fix damaged aircraft and ground vehicle parts.

Researchers found that combining the general purpose, finite-element analysis software ABAQUS with Python, an open-source code used to optimize logical structures such as topologically interlocked structures, improves energy absorption and dissipation, productivity and lower maintenance costs.

The combination of ABAQUS and Python provides an automated process for auto-generation of the geometries, models, materials assignments and code execution, said Ed Habtour, a research engineer with U.S. Army Research Laboratory’s, or ARL’s, Vehicle Technology Directorate at Aberdeen Proving Ground, Md.

He said the code is developed to assist designers with tools to model the new generation of 3-D additive manufactured and TISs structures.

“The benefit for the soldier is an after-effect,” Habtour said. “The TIS would provide an excellent energy absorption and dissipation mechanism for future vehicles using additive manufacturing. Subsequently, the Soldier can print these structures in the field using additive manufacturing by simply downloading the model generated by the designer/vendor.”

The research team developed logical structures from the mini-composition of tetrahedron-shaped cells in existing materials, an approach ARL research engineers say is a vast departure from the military’s tendency to build new materials to meet existing problems.

“Traditionally, every time the U.S. Army encounters a problem in the field the default has been to develop new and exotic materials. Using logical structures can be effective in solving some critical and challenging problems, like the costly and time-consuming certification process that all new materials must face,” Habtour said.

This logical structure is based on principles of segmentation and assembly, where the structure is segmented into independent unit elements then reconfigured/assembled logically and interlocked in an optimal orientation to enhance the overall properties of the structure, Habtour explained.

The researchers are focusing on topologically interlocked structures using VTD’s 3-D additive manufacturing approach to build 2-D and 3-D structures based on cells in the shape of Platonic solids.

Habtour said new structures created from this process are designed to be adaptive and configurable to the harsh conditions like random and harmonic vibrations, thermal loads, repetitive shocks due to road bumps, crash and acoustic attenuation. An added bonus he said is that these structures are configured to prevent crack propagation.

“Sometime in the near future, Soldiers would be able to fabricate and repair these segmented structures very easily in the front lines or Forward Operating Bases, so instead of moving damaged ground or air vehicles to a main base camp for repair, an in-field repair approach would essentially mean vehicles would be fixed and accessible to war fighters much faster at lower costs,” said Habtour. “We want to change the conventional thinking by taking advantage of exciting materials and manipulating the structure based on the principle of segmentation and assembly.”

ARL is working closely with project managers at The U. S. Army Aviation and Missile Research Development and Engineering Center. Discussions are already underway to transition this work to AMRDEC and Tank Automotive Research, Development and Engineering Center developmental programs.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 
 

SMC stands up new Advanced Systems, Development Directorate

While space officially begins at 62 miles above the Earth’s surface, for the men and women of the Air Force space begins near sea level at the Space and Missile Systems Center, Los Angeles Air Force Base,Calif. SMC is where innovative ideas are matured into space systems that deliver operational capabilities to U.S. warfighters in...
 

 
Air Force photograph by Samuel King Jr.

Navy’s first F-35C squadron surpasses 1,000 flight hours

Air Force photograph by Samuel King Jr. An F-35C Lightning II aircraft piloted by Lt. Cmdr. Chris Tabert, assigned to Strike Fighter Squadron (VFA) 101, flies the squadron’s first local sortie. The F-35C is the carrier va...
 
 

Salina, Kansas, recalls anniversary of shuttered base

It has been 50 years this month since the announcement that Schilling Air Force Base was closing rattled Salina residents. The Salina Journal, which carried news of the closure in its Nov. 19, 1964, editions, reported that the economic disaster then spared no part of the community – real estate, retail, civic involvement, church attendance,...
 
 
Navy photograph by Seaman Sabrina Fine

SEWIP block upgrade program evaluated for LCS

Navy photograph by Seaman Sabrina Fine Cryptologic Technician (Technical) Seaman Helen Hernandez monitors an SLQ-32 radar aboard the Nimitz-class aircraft carrier USS Dwight D. Eisenhower (CVN 69). Dwight D. Eisenhower is deplo...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>