Defense

August 14, 2013

Army Research Lab, Purdue explore 3-D printing to fix deployed equipment, cut maintenance costs

T'Jae Gibson
Aberdeen Proving Ground, Md.

New technology being developed by research engineers at the U.S. Army Research Laboratory and Purdue University will soon help just about any soldier deployed in far-off locations to immediately spot and fix damaged aircraft and ground vehicle parts.

Researchers found that combining the general purpose, finite-element analysis software ABAQUS with Python, an open-source code used to optimize logical structures such as topologically interlocked structures, improves energy absorption and dissipation, productivity and lower maintenance costs.

The combination of ABAQUS and Python provides an automated process for auto-generation of the geometries, models, materials assignments and code execution, said Ed Habtour, a research engineer with U.S. Army Research Laboratory’s, or ARL’s, Vehicle Technology Directorate at Aberdeen Proving Ground, Md.

He said the code is developed to assist designers with tools to model the new generation of 3-D additive manufactured and TISs structures.

“The benefit for the soldier is an after-effect,” Habtour said. “The TIS would provide an excellent energy absorption and dissipation mechanism for future vehicles using additive manufacturing. Subsequently, the Soldier can print these structures in the field using additive manufacturing by simply downloading the model generated by the designer/vendor.”

The research team developed logical structures from the mini-composition of tetrahedron-shaped cells in existing materials, an approach ARL research engineers say is a vast departure from the military’s tendency to build new materials to meet existing problems.

“Traditionally, every time the U.S. Army encounters a problem in the field the default has been to develop new and exotic materials. Using logical structures can be effective in solving some critical and challenging problems, like the costly and time-consuming certification process that all new materials must face,” Habtour said.

This logical structure is based on principles of segmentation and assembly, where the structure is segmented into independent unit elements then reconfigured/assembled logically and interlocked in an optimal orientation to enhance the overall properties of the structure, Habtour explained.

The researchers are focusing on topologically interlocked structures using VTD’s 3-D additive manufacturing approach to build 2-D and 3-D structures based on cells in the shape of Platonic solids.

Habtour said new structures created from this process are designed to be adaptive and configurable to the harsh conditions like random and harmonic vibrations, thermal loads, repetitive shocks due to road bumps, crash and acoustic attenuation. An added bonus he said is that these structures are configured to prevent crack propagation.

“Sometime in the near future, Soldiers would be able to fabricate and repair these segmented structures very easily in the front lines or Forward Operating Bases, so instead of moving damaged ground or air vehicles to a main base camp for repair, an in-field repair approach would essentially mean vehicles would be fixed and accessible to war fighters much faster at lower costs,” said Habtour. “We want to change the conventional thinking by taking advantage of exciting materials and manipulating the structure based on the principle of segmentation and assembly.”

ARL is working closely with project managers at The U. S. Army Aviation and Missile Research Development and Engineering Center. Discussions are already underway to transition this work to AMRDEC and Tank Automotive Research, Development and Engineering Center developmental programs.




All of this week's top headlines to your email every Friday.


 
 

 
Courtesy photograph

AEDC and AFRL collaborate to make advances in hypersonic technology

Air Force photograph by Mike Smith As part of the U.S.-German cooperative program known as Hypersonic International Flight Experimentation, an integrated aerodynamic and aerothermal test and analysis of a hypersonic cruise vehi...
 
 

Minuteman III rocket motor aging surveillance test completed at AEDC

Arnold Engineering Development Complex personnel completed testing of a Minuteman III Stage II motor in the Complex’s J-6 Large Rocket Test Facility for aging surveillance of the 48-year-old defense program. “The Stage II motor is part of the Minuteman III Aging and Surveillance test program to obtain motor performance data that is used to identify...
 
 
navair-triton

MQ-4C Tritons to arrive at Pax River this fall

  MQ-4C Triton test air vehicles at Northrop Grumman’s facility in Palmdale, Calif., will fly cross-country to Naval Air Station Patuxent River, Md., this fall. The MQ-4C completed a test flight Aug. 19 with updated ...
 

 
global-hawk2

Air Combat Command loans Global Hawk to GVCTF

Air Force photograph by Jennifer Romo The 412th Test Wing’s Global Vigilance Combined Test Force received a Global Hawk Block 40 Aug. 6, on loan from Air Combat Command. Tail number 2035, from Grand Forks AFB, N.D., is jo...
 
 
C130b

C-130 Hercules still going strong at 60

Air Force photograph The C-130H Hercules dons the new eight-blade NP-2000 propellers. The 418th Flight Test Squadron replaced the C-130H Hercules’ four-bladed propellers with the eight-bladed propellers in 2008 in support...
 
 
Army photograph by Sgt. Brandon Hubbard

Romania air base replaces Transit Center Manas

Army photograph by Sgt. Brandon Hubbard Oregon Army National Guard, 41st Infantry Brigade Combat Team Soldiers from load onto a C-17 Globemaster III Aug. 13, 2013, bound for Afghanistan from Mihail Kogalniceanu Air Base, Romani...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>