Defense

August 14, 2013

Army Research Lab, Purdue explore 3-D printing to fix deployed equipment, cut maintenance costs

T'Jae Gibson
Aberdeen Proving Ground, Md.

New technology being developed by research engineers at the U.S. Army Research Laboratory and Purdue University will soon help just about any soldier deployed in far-off locations to immediately spot and fix damaged aircraft and ground vehicle parts.

Researchers found that combining the general purpose, finite-element analysis software ABAQUS with Python, an open-source code used to optimize logical structures such as topologically interlocked structures, improves energy absorption and dissipation, productivity and lower maintenance costs.

The combination of ABAQUS and Python provides an automated process for auto-generation of the geometries, models, materials assignments and code execution, said Ed Habtour, a research engineer with U.S. Army Research Laboratory’s, or ARL’s, Vehicle Technology Directorate at Aberdeen Proving Ground, Md.

He said the code is developed to assist designers with tools to model the new generation of 3-D additive manufactured and TISs structures.

“The benefit for the soldier is an after-effect,” Habtour said. “The TIS would provide an excellent energy absorption and dissipation mechanism for future vehicles using additive manufacturing. Subsequently, the Soldier can print these structures in the field using additive manufacturing by simply downloading the model generated by the designer/vendor.”

The research team developed logical structures from the mini-composition of tetrahedron-shaped cells in existing materials, an approach ARL research engineers say is a vast departure from the military’s tendency to build new materials to meet existing problems.

“Traditionally, every time the U.S. Army encounters a problem in the field the default has been to develop new and exotic materials. Using logical structures can be effective in solving some critical and challenging problems, like the costly and time-consuming certification process that all new materials must face,” Habtour said.

This logical structure is based on principles of segmentation and assembly, where the structure is segmented into independent unit elements then reconfigured/assembled logically and interlocked in an optimal orientation to enhance the overall properties of the structure, Habtour explained.

The researchers are focusing on topologically interlocked structures using VTD’s 3-D additive manufacturing approach to build 2-D and 3-D structures based on cells in the shape of Platonic solids.

Habtour said new structures created from this process are designed to be adaptive and configurable to the harsh conditions like random and harmonic vibrations, thermal loads, repetitive shocks due to road bumps, crash and acoustic attenuation. An added bonus he said is that these structures are configured to prevent crack propagation.

“Sometime in the near future, Soldiers would be able to fabricate and repair these segmented structures very easily in the front lines or Forward Operating Bases, so instead of moving damaged ground or air vehicles to a main base camp for repair, an in-field repair approach would essentially mean vehicles would be fixed and accessible to war fighters much faster at lower costs,” said Habtour. “We want to change the conventional thinking by taking advantage of exciting materials and manipulating the structure based on the principle of segmentation and assembly.”

ARL is working closely with project managers at The U. S. Army Aviation and Missile Research Development and Engineering Center. Discussions are already underway to transition this work to AMRDEC and Tank Automotive Research, Development and Engineering Center developmental programs.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by 1st Lt. Jake Bailey

Cope South experts exchange knowledge, techniques

Air Force photograph by 1st Lt. Jake Bailey TSgt. Sam Bishop, center left, and SSgt. Jeffrey Stephens discuss propeller maintenance with Bangladesh air force maintainers, from the 101st Special Flying Unit, during exercise Cope...
 
 

Air Force names 2-star to lead F-35 Integration Office

With the initial operating capability date of the F-35 Lightning II quickly approaching, the Air Force appointed Maj. Gen. Jeffrey Harrigian as the director of a larger Air Force F-35 Integration Office, Feb. 1. In addition to gaining new leadership, the F-35 Integration Office will also grow from a staff of four to 12 and...
 
 
Air Force photograph by Scott M. Ash

Air Force risks becoming too small to succeed under sequestration

Air Force photograph by Scott M. Ash Air Force Chief of Staff Gen. Mark A. Welsh III testifies before the Senate Armed Services Committee Jan. 28, 2015, in Washington, D.C., as Commandant of the Marine Corps Gen. Joesph F. Dunf...
 

 
Navy photograph by Ens. Jessica Kellogg

USS Elrod is decommissioned

Navy photograph by Ens. Jessica Kellogg The Oliver Hazard Perry-class frigate USS Elrod (FFG 55) returns to her homeport at Naval Station Norfolk after a six-month deployment to the U.S. 6th Fleet area of responsibility. This w...
 
 

AF Identifies Boeing 747-8 platform for next Air Force One

Secretary of the Air Force Deborah Lee James, in coordination with the Undersecretary of Defense for Acquisition, Technology and Logistics Frank Kendall, has determined the Boeing 747-8 will serve as the next presidential aircraft, commonly known as Air Force One. “The presidential aircraft is one of the most visible symbols of the United States of...
 
 
Navy photograph

USS Roosevelt marks 200,000 trap

Navy photograph An F/A-18F Super Hornet flown by Capt. Daniel Grieco, commanding officer of the aircraft carrier USS Theodore Roosevelt (CVN 71), and Capt. Benjamin Hewlett, deputy commander of Carrier Air Wing (CVW) 1, complet...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>