Defense

August 14, 2013

Army Research Lab, Purdue explore 3-D printing to fix deployed equipment, cut maintenance costs

T'Jae Gibson
Aberdeen Proving Ground, Md.

New technology being developed by research engineers at the U.S. Army Research Laboratory and Purdue University will soon help just about any soldier deployed in far-off locations to immediately spot and fix damaged aircraft and ground vehicle parts.

Researchers found that combining the general purpose, finite-element analysis software ABAQUS with Python, an open-source code used to optimize logical structures such as topologically interlocked structures, improves energy absorption and dissipation, productivity and lower maintenance costs.

The combination of ABAQUS and Python provides an automated process for auto-generation of the geometries, models, materials assignments and code execution, said Ed Habtour, a research engineer with U.S. Army Research Laboratory’s, or ARL’s, Vehicle Technology Directorate at Aberdeen Proving Ground, Md.

He said the code is developed to assist designers with tools to model the new generation of 3-D additive manufactured and TISs structures.

“The benefit for the soldier is an after-effect,” Habtour said. “The TIS would provide an excellent energy absorption and dissipation mechanism for future vehicles using additive manufacturing. Subsequently, the Soldier can print these structures in the field using additive manufacturing by simply downloading the model generated by the designer/vendor.”

The research team developed logical structures from the mini-composition of tetrahedron-shaped cells in existing materials, an approach ARL research engineers say is a vast departure from the military’s tendency to build new materials to meet existing problems.

“Traditionally, every time the U.S. Army encounters a problem in the field the default has been to develop new and exotic materials. Using logical structures can be effective in solving some critical and challenging problems, like the costly and time-consuming certification process that all new materials must face,” Habtour said.

This logical structure is based on principles of segmentation and assembly, where the structure is segmented into independent unit elements then reconfigured/assembled logically and interlocked in an optimal orientation to enhance the overall properties of the structure, Habtour explained.

The researchers are focusing on topologically interlocked structures using VTD’s 3-D additive manufacturing approach to build 2-D and 3-D structures based on cells in the shape of Platonic solids.

Habtour said new structures created from this process are designed to be adaptive and configurable to the harsh conditions like random and harmonic vibrations, thermal loads, repetitive shocks due to road bumps, crash and acoustic attenuation. An added bonus he said is that these structures are configured to prevent crack propagation.

“Sometime in the near future, Soldiers would be able to fabricate and repair these segmented structures very easily in the front lines or Forward Operating Bases, so instead of moving damaged ground or air vehicles to a main base camp for repair, an in-field repair approach would essentially mean vehicles would be fixed and accessible to war fighters much faster at lower costs,” said Habtour. “We want to change the conventional thinking by taking advantage of exciting materials and manipulating the structure based on the principle of segmentation and assembly.”

ARL is working closely with project managers at The U. S. Army Aviation and Missile Research Development and Engineering Center. Discussions are already underway to transition this work to AMRDEC and Tank Automotive Research, Development and Engineering Center developmental programs.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines May 4, 2015

News: Authorization Bill a prelude to U.S. spending showdown - The House Armed Services Committee handed the Pentagon and U.S. defense sector a victory by surgically protecting weapon programs and authorizing extra war funding – but a showdown with the White House looms.   Business: Canada plans major sub-life extension - Canada has begun work on a...
 
 

New’s Briefs May 4, 2015

Senator proposes extended military foreclosure protection Sen. Sheldon Whitehouse says he has introduced legislation to help protect military service members from losing their homes to foreclosure. The Rhode Island Democrat said May 2 he has introduced a bill to extend one that is due to expire this year. The law protects service members for a...
 
 
Northrop Grumman photograph

Global Hawk earns unprecedented third consecutive sustainment award

Northrop Grumman photograph A U.S. Air Force RQ-4 Global Hawk on a runway in Palmdale, Calif. For an unprecedented third year in a row, the U.S. Air Force RQ-4 Global Hawk unmanned aircraft program was officially awarded the Dr...
 

 
Lockheed Martin photograph

Most advanced GPS satellite comes together

Lockheed Martin photograph Lockheed Martin recently fully integrated the U.S. Air Force’s first next generation GPS III satellite at the company’s Denver-area satellite manufacturing facility.  The first in a design block ...
 
 
navair-fire-scout

MQ-8C Fire Scout completes developmental flight test

Northrop Grumman photograph An MQ-8C Fire Scout†conducts its†final†developmental test flight April 29 from Naval Base Ventura County at Point Mugu, Calif.† Since its first flight in October 2013, the Navy’s new, l...
 
 
boeing-swiss

Boeing, SWISS finalize order for three additional 777-300ERs

Boeing, the Lufthansa Group and Swiss International Air Lines have finalized an order for three additional 777-300ER (Extended Range) airplanes, valued at $990 million at current list prices. This order, previously attributed t...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>