Tech

August 14, 2013

SOFIA in New Zealand—Much attempted, much achieved

The SOFIA 747SP prepares for takeoff from Christchurch International Airport, New Zealand, on one of nine science missions to collect infrared astronomy data about the skies over the Southern Hemisphere.

 

Fly 6,900 miles each way, deploy a cadre of flight and ground crew members along with an international science team for three weeks, and during that time fly three nights per week, 10 hours per flight, all while conducting world-class science. It’s a lot to imagine, and even greater to have accomplished it all.

To meet our program goals set earlier this year, the Stratospheric Observatory for Infrared Astronomy (SOFIA) departed the United States on July 12 for the first leg of its deployment to Christchurch, New Zealand. Having stopped for a flight crew change and some Hawaiian hospitality from the good folks at Joint Base Pearl Harbor-Hickam outside of Honolulu, the observatory arrived the following morning at Christchurch where preparations began for the first of nine science missions.

Water vapor in the Earth’s atmosphere is extremely low during the winter months over the southern oceans, thus our decision to base the observatory at Christchurch. Contributing to that decision was the infrastructure provided by the U.S. Antarctic Program, which is operated by the National Science Foundation from the Christchurch International Airport. During our deployment, the NSF opened its facilities to us, and they, along with everyone at the Christchurch International Airport, were most gracious hosts.
 

SOFIA program manager Eddie Zavala welcomes home the SOFIA team from the program’s first deployment to the Southern Hemisphere.

 
While we were on New Zealand’s southern island, our team was supported by the U.S. State Department and U.S. Ambassador to New Zealand and Samoa David Huebner and his staff who are based in Wellington, the capital on the northern island. I’d also like to extend a special note of appreciation to all of the New Zealanders who were very interested in our mission and made our team feel most welcome.

For our flights from Christchurch we planned a series of observations using the German Receiver for Astronomy at Terahertz Frequencies that were proposed by a combination of guest astronomy investigators plus members of the GREAT consortium. Developed by a team from the Max Planck Institute for Radio Astronomy, Bonn, Germany, the GREAT instrument is a spectrometer that detects the wave aspect rather than the particle aspect of infrared light. Among its many other capabilities, GREAT helps astronomers measure the chemical composition of star-forming regions and supernova remnants. For this deployment we spent the majority of our time observing the Milky Way Galaxy’s central regions and its companion dwarf galaxies known as the Magellanic Clouds.

Measuring the chemical composition of the interstellar medium in the Magellanic Clouds enables astronomers to infer conditions right after the “Big Bang” because the material of the clouds has not been recycled through many generations of stars forming and dying. Even though this material has been floating in space for millions of years, it is considered relatively “fresh” and in an unprocessed state. SOFIA’s access to this material means our observatory can, in effect, do cosmology research without the need to make measurements of galaxies billions of light years away. This capability is very exciting to our science staff and the worldwide astronomical community.
 

The German Receiver for Astronomy at Terahertz Frequencies (GREAT) is mounted on the SOFIA telescope for the program’s first deployment to investigate the skies over the Southern Hemisphere.

 
SOFIA’s deployment to New Zealand, completed on Aug. 2, was entirely successful and very important to our program. We demonstrated the capability to operate the world’s largest airborne astronomical observatory with high efficiency and reliability, achieving 100 percent of the planned science flights. By all accounts the quality of the scientific data was also outstanding. The international deployment team did an excellent job planning and safely executing every logistical and operational detail, and those of us “left behind” worked hard before and during the deployment to support them. Completing our first scientific deployment is a key accomplishment in our transition to becoming a fully operational observatory.

Congratulations to the entire team for this outstanding achievement. I am very happy to welcome them back home!

 

Editor’s Note: Zavala is program manager of the Stratospheric Observatory For Infrared Astronomy, or SOFIA, program at NASA’s Dryden Flight Research Center, Edwards, Calif. In this position, he is responsible for overall development and operation of the SOFIA Science Center at Ames Research Center, Moffett Field, Calif., and the airborne observatory, which features a German-built 2.5-meter infrared telescope mounted in a highly modified Boeing 747SP aircraft based at the Dryden Aircraft Operations Facility in Palmdale, Calif. The program, a cooperative effort between NASA’s Dryden and Ames research centers and DLR, the German Aerospace Center, is the agency’s next-generation airborne observatory, giving astronomers routine access to the infrared and sub-millimeter portions of the electromagnetic spectrum of the universe.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>