Business

August 19, 2013

US Army, Raytheon achieve first inflight lethal intercept of low quadrant elevation rocket

YUMA PROVING GROUND, Ariz. – Raytheon successfully intercepted and destroyed a low quadrant elevation 107mm rocket as part of the second series of guided test vehicle flight tests of the Accelerated Improved Intercept Initiative program.

The intercept is a major test milestone before the U.S. Army live-fire engagements begin in September.

“Beginning only 18 months and one week ago, and with firm cost requirements, the AI3 interceptor project successfully engaged and destroyed an inflight rocket on a challenging, high-speed flight profile greatly enhancing the range of existing capabilities,” said Michael Van Rassen, the U.S. Army’s Project Director for Counter Rockets, Artillery and Mortars and AI3. “The project used a system of systems approach that lowered risk and enabled an accelerated schedule by leveraging existing government components and off the shelf subsystems to expand the footprint of the protected area for our warfighters.”

The AI3 Battle Element system includes: a Raytheon Ku Radio Frequency System Fire Control Radar, an Avenger-based AI3 launcher, a C-RAM command and control, Technical Fire Control, and the Raytheon AI3 interceptor missile.

After launch, the AI3 interceptor initially guided on inflight radio frequency data link updates from the Ku RF Sensor radar, which was tracking an inbound rocket target threat. The interceptor then transitioned to terminal guidance using the interceptor’s onboard seeker and the illumination from the radar to guide the missile to within lethal range. The target was then detected using an active RF proximity fuze that determined the optimal detonation time for the warhead. With these measurements, the missile calculated the appropriate warhead burst time and defeated the incoming threat.

“This is a significant technical and performance milestone for the program and our team that met the Army’s tight schedule and costs objectives,” said Steve Bennett, Raytheon Missile Systems AI3 Program Director. “This second GTV demonstrated full integration of the AI3 Battle Element with the C-RAM command and control architecture against the threat target.”

Beginning in September, the Army will conduct for-the-record testing of AI3 and continue to engage and destroy baseline and enhanced capability targets such as 107mm and other rockets, unmanned air systems and other threats to forward operating bases.

About AI3

AI3 will protect warfighters by intercepting rockets inflight with these components:

  • Radar: KRFS fire control radar leverages mature technology built for the Army’s Future Combat System and that is currently fielded.
  • Raytheon AI3 interceptor: In addition to inflight rockets on low QE flight profiles, the AIM-9 variant missile is capable of intercepting additional targets such as mortars, UAS’s and other air breathing platforms at ranges greater than existing capabilities. This varied capability will be tested in the near future.
  • Launcher: An Avenger weapon system modified to fire AI3 missiles and several additional munitions. This common launcher uses rails that are capable of firing the AI3, AMRAAM (Advanced Medium Range Air-to-Air Missile) and AIM-9 series of missiles.
  • Command and control system: The C-RAM C2 system is fielded and combat-proven and will transition as part of the Army’s new Integrated Air and Missile Defense Integrated Battle Command System.
  • Raytheon is providing the interceptor and KRFS radar and serving as support to the Government Team, which is the overall systems integrator.

 




All of this week's top headlines to your email every Friday.


 
 

 
Boeing photographs

Boeing-built X-37B successfully completes third flight

Unmanned spacecraft concludes record-setting 674-day mission   Boeing photograph A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg...
 
 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

AF to release small business research solicitations

The Air Force Small Business Innovation Research and Small Business Technology Transfer program office is set to release its fiscal year 2015 list of topics Oct. 22, on the SBIR/STTR website.  Small businesses and research institutions with expertise to address the topics’ technology challenges are encouraged to submit proposals. During 2014, the Defense Department SBIR...
 

 
dassault

Dassault Falcon Jet establishes new pilot operational support team

Arnaud Paulmier, head of Dassault Falcon Jet’s new operational support team. Dassault Falcon Jet recently established a new Pilot Operational Support Team in Teterboro, N.J., to support operators in the Western Hemisphere. Th...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 
Navy photograph by POC Sam Shavers

Navy christens, launches future USS Detroit

Navy photograph by POC Sam Shavers Ship’s sponsor Barbara Levin breaks a bottle of champagne across the bow during the christening ceremony for the littoral combat ship Pre-Commissioning Unit (PCU) Detroit (LCS 7) at Mari...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>