Tech

August 21, 2013

NASA crashes helicopter to study safety

NASA researchers will drop a 45-foot-long helicopter fuselage from a height of about 30 feet to test improved seat belts and seats and advance experimental techniques and crashworthiness data.

News media representatives are invited to observe the drop test, scheduled for 1 p.m. EDT Wednesday, Aug. 28, at NASA’s Langley Research Center in Hampton, Va. U.S. media members must email Kathy Barnstorff at kathy.barnstorff@nasa.gov or call 757-864-9886 for credentials no later than 5 p.m. Tuesday, Aug. 27. Researchers will be available for interviews after the test.

NASA is collaborating with the U.S. Navy, U.S. Army and Federal Aviation Administration on the Transport Rotorcraft Airframe Crash Test Bed full-scale crash tests at Langley’s Landing and Impact Research Facility.

“We have instrumented a former Marine helicopter airframe with cameras and accelerometers,” said lead test engineer Martin Annett. “Almost 40 cameras inside and outside the helicopter will record how 13 crash test dummies react before, during and after impact.”

During the test, onboard computers will record more than 350 channels of data as the helicopter is swung by cables, like a pendulum, into a bed of soil. Just before impact, pyrotechnic devices release the suspension cables from the helicopter to allow free flight. The helicopter will hit the ground at about 30 mph. The impact condition represents a severe but survivable condition under both civilian and military requirements.

For the first time ever in any test, technicians installed a video game motion sensor in the helicopter. “We want to see if it is useful as an additional way to track the movements of the dummies,” said test engineer Justin Littell.

The outside of the fuselage also is new for this test. Technicians painted one entire side in black polka dots over a white background — a photographic technique called full field photogrammetry. Each dot represents a data point. High-speed cameras filming at 500 images per second track each dot, so after over the drop researchers can plot and see exactly how the fuselage buckled, bent, cracked or collapsed under crash loads.

Another crash test of a similar helicopter equipped with additional technology, including composite airframe retrofits, is planned for next year. Both tests are part of the Rotary Wing Project in the Fundamental Aeronautics Program of NASA’s Aeronautics Research Mission Directorate.

The Navy provided the CH-46 Sea Knight helicopter fuselages, seats, crash test dummies and other experiments for the test. The Army contributed a litter experiment with a crash test dummy. The Federal Aviation Administration provided a side-facing specialized crash test dummy and part of the data acquisition system. Cobham Life Support-St. Petersburg, a division of CONAX Florida Corporation, also contributed an active restraint system for the cockpit.

NASA will use the results of both tests in efforts to improve rotorcraft performance and efficiency, in part by assessing the reliability of high performance, lightweight composite materials. Researchers also want to increase industry knowledge and create more complete computer models that can be used to design better helicopters.

The ultimate goal of NASA rotary wing research is to help make helicopters and other vertical take-off and landing vehicles more serviceable — able to carry more passengers and cargo — quicker, quieter, safer and greener. Improved designs might allow helicopters to be used more extensively in the airspace system.
The following address for a live-stream will be activated just prior to the test:
http://www.ustream.tv/channel/NASA-lrc
For more information about NASA Aeronautics research, go to:
http://aeronautics.nasa.gov




All of this week's top headlines to your email every Friday.


 
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAís associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 

 

Report: Major federal lab misused contract funds

Managers at one of the nation’s premier federal laboratories improperly used taxpayer funds to influence members of Congress and other officials as part of an effort to extend the lab’s $2.4 billion management contract, the U.S. Department of Energy’s Office of Inspector General said in a report Nov. 12. A review of documents determined that...
 
 

Teams announced for NASA 2015 robotics operations competition

Eight universities have advanced to the next round of “RASC-AL Robo-Ops,” a planetary rover robotics engineering competition sponsored by NASA and organized by the National Institute of Aerospace. The teams selected are California State University Long Beach, Massachusetts Institute of Technology, Cambridge; San Jose State University in California; University of Buffalo in New York;...
 
 
NASA photograph by Ken Ulbrich

NASA tests revolutionary shape changing aircraft flap for first time

NASA photograph by Ken Ulbrich For taxi testing Oct. 31, 2014, at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., the Adaptive Compliant Trailing Edge flap was extended to 20 degrees deflection. Fli...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>