Space

August 26, 2013

Lockheed Martin celebrates 10 years of mission success for Spitzer Space Telescope

Ten years ago, NASA’s Spitzer Space Telescope ñ built, integrated and tested at Lockheed Martin Space Systems in Sunnyvale, Calif. ñ roared into space from the Kennedy Space Center in Florida, carrying the observatory into an Earth-trailing orbit around the sun.

The Spitzer Space Telescope is a space-borne, cryogenically-cooled infrared observatory that studies objects ranging from our Solar System to the distant reaches of the Universe.

Lockheed Martin Space Systems in Denver provides mission support for Spitzer spaceflight operations in conjunction with the Jet Propulsion Laboratory and the California Institute of Technology.

We are extremely proud of our decades of work on behalf of NASA, and honored to have played such a key role in the Spitzer Space Telescope program,î said Jim Crocker, Lockheed Martin vice president of Civil Space. ìIt is particularly satisfying because celebrating Spitzerís 10th anniversary seemed unlikely at the outset as the mission was designed to last between two and five years.

In May 2009 the onboard liquid helium supply on Spitzer was exhausted. The mission was extended, however, because the two shortest wavelength detectors in Spitzerís camera continued functioning perfectly as the observatory trailed far behind the Earth in its orbit, through the cold of deep space.

The Spitzer Space Telescope views the universe in infrared light, which is largely blocked by the Earthís atmosphere. With Spitzer, astronomers have determined that Earth-like planets form around many, if not most of the nearby Sun-like stars in our galaxy, suggesting that the potential for life might be more common that previously thought. In looking at our own galaxy ñ the Milky Way galaxy ñ the observatory has given astronomers valuable insights by revealing where new stars are forming. In addition, the infrared eyes of Spitzer are ideal for studying distant planet forming disks, and characterizing planets beyond our Solar System.

The spaceborne Spitzer observatory comprises a 0.85-meter diameter telescope and three scientific instruments capable of performing imaging and spectroscopy in the 3-180 micron wavelength regime. Spitzer has provided more than a 100-fold increase in scientific capability over previous infrared missions. Ball Aerospace in Boulder, Colo. built Spitzerís Cryogenic Telescope Assembly, which includes the scientific instruments.

Spitzer was the fourth and final member of NASAís family of Great Observatories, which also includes the Chandra X-Ray Observatory, the Compton Gamma Ray Observatory, and the Hubble Space Telescope also built, integrated and operated by Lockheed Martin. The interaction of multiple Great Observatories coordinating observations enabled a greater science return and deeper understanding as astronomical phenomena could be imaged simultaneously over many different wavelengths. Hubble, Spitzer and Chandra remain in operation.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 
 
NASA/MSFC image

NASA completes key review of world’s most powerful rocket

NASA/MSFC image Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimate...
 
 
Image courtesy of NASA, Z. Levay, G. Bacon (STScI)

NASA telescopes uncover early construction of giant galaxy

Image courtesy of NASA, Z. Levay, G. Bacon (STScI) Artist impression of a firestorm of star birth deep inside core of young, growing elliptical galaxy. Astronomers have for the first time caught a glimpse of the earliest stages...
 

 

Lockheed Martin, Electro Optic Systems to establish space debris tracking site

Under a new strategic cooperation agreement, Lockheed Martin and Electro Optic Systems Pty Ltd are developing a new space object tracking site in Western Australia that will paint a more detailed picture of space debris for both government and commercial customers. The site will use a combination of lasers and sensitive optical systems like those...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 
 

NASA awards contract option on test, operations support contract

NASA has exercised the first option to extend the period of performance of its Test and Operations Support Contract with Jacobs Technology Inc. of Tullahoma, Tenn., to Sept. 30, 2016. Jacobs Technology Inc. will provide continued overall management and implementation of ground systems capabilities, flight hardware processing and launch operations in support of the International...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>