Space

August 26, 2013

Lockheed Martin celebrates 10 years of mission success for Spitzer Space Telescope

Ten years ago, NASA’s Spitzer Space Telescope ñ built, integrated and tested at Lockheed Martin Space Systems in Sunnyvale, Calif. ñ roared into space from the Kennedy Space Center in Florida, carrying the observatory into an Earth-trailing orbit around the sun.

The Spitzer Space Telescope is a space-borne, cryogenically-cooled infrared observatory that studies objects ranging from our Solar System to the distant reaches of the Universe.

Lockheed Martin Space Systems in Denver provides mission support for Spitzer spaceflight operations in conjunction with the Jet Propulsion Laboratory and the California Institute of Technology.

We are extremely proud of our decades of work on behalf of NASA, and honored to have played such a key role in the Spitzer Space Telescope program,î said Jim Crocker, Lockheed Martin vice president of Civil Space. ìIt is particularly satisfying because celebrating Spitzerís 10th anniversary seemed unlikely at the outset as the mission was designed to last between two and five years.

In May 2009 the onboard liquid helium supply on Spitzer was exhausted. The mission was extended, however, because the two shortest wavelength detectors in Spitzerís camera continued functioning perfectly as the observatory trailed far behind the Earth in its orbit, through the cold of deep space.

The Spitzer Space Telescope views the universe in infrared light, which is largely blocked by the Earthís atmosphere. With Spitzer, astronomers have determined that Earth-like planets form around many, if not most of the nearby Sun-like stars in our galaxy, suggesting that the potential for life might be more common that previously thought. In looking at our own galaxy ñ the Milky Way galaxy ñ the observatory has given astronomers valuable insights by revealing where new stars are forming. In addition, the infrared eyes of Spitzer are ideal for studying distant planet forming disks, and characterizing planets beyond our Solar System.

The spaceborne Spitzer observatory comprises a 0.85-meter diameter telescope and three scientific instruments capable of performing imaging and spectroscopy in the 3-180 micron wavelength regime. Spitzer has provided more than a 100-fold increase in scientific capability over previous infrared missions. Ball Aerospace in Boulder, Colo. built Spitzerís Cryogenic Telescope Assembly, which includes the scientific instruments.

Spitzer was the fourth and final member of NASAís family of Great Observatories, which also includes the Chandra X-Ray Observatory, the Compton Gamma Ray Observatory, and the Hubble Space Telescope also built, integrated and operated by Lockheed Martin. The interaction of multiple Great Observatories coordinating observations enabled a greater science return and deeper understanding as astronomical phenomena could be imaged simultaneously over many different wavelengths. Hubble, Spitzer and Chandra remain in operation.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>