Space

August 31, 2013

NASA-funded scientists detect water on moon’s Surface that hints at water below

NASA-funded lunar research has yielded evidence of water locked in mineral grains on the surface of the moon from an unknown source deep beneath the surface.

Using data from NASA’s Moon Mineralogy Mapper (M3) instrument aboard the Indian Space Research Organization’s Chandrayaan-1 spacecraft, scientists remotely detected magmatic water, or water that originates from deep within the moon’s interior, on the surface of the moon.

The findings, published Aug. 25 in Nature Geoscience, represent the first detection of this form of water from lunar orbit. Earlier studies had shown the existence of magmatic water in lunar samples returned during the Apollo program.

M3 imaged the lunar impact crater Bullialdus, which lies near the lunar equator. Scientists were interested in studying this area because they could better quantify the amount of water inside the rocks due to the crater’s location and the type of rocks it held. The central peak of the crater is made up of a type of rock that forms deep within the lunar crust and mantle when magma is trapped underground.

“This rock, which normally resides deep beneath the surface, was excavated from the lunar depths by the impact that formed Bullialdus crater,” said Rachel Klima, a planetary geologist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

“Compared to its surroundings, we found that the central portion of this crater contains a significant amount of hydroxyl – a molecule consisting of one oxygen atom and one hydrogen atom — which is evidence that the rocks in this crater contain water that originated beneath the lunar surface,” Klima said.

In 2009, M3 provided the first mineralogical map of the lunar surface and discovered water molecules in the polar regions of the moon. This water is thought to be a thin layer formed from solar wind hitting the moon’s surface. Bullialdus crater is in a region with an unfavorable environment for solar wind to produce significant amounts of water on the surface.

“NASA missions like Lunar Prospector and the Lunar Crater Observation and Sensing Satellite and instruments like M3 have gathered crucial data that fundamentally changed our understanding of whether water exists on the surface of the moon,” said S. Pete Worden, center director at NASA’s Ames Research Center in Moffett Field, Calif. “Similarly, we hope that upcoming NASA missions such as the Lunar Atmosphere and Dust Environment Explorer, or LADEE, will change our understanding of the lunar sky.”

The detection of internal water from orbit means scientists can begin to test some of the findings from sample studies in a broader context, including in regions that are far from where the Apollo sites are clustered on the near side of the moon. For many years, researchers believed that the rocks from the moon were bone-dry and any water detected in the Apollo samples had to be contamination from Earth.

“Now that we have detected water that is likely from the interior of the moon, we can start to compare this water with other characteristics of the lunar surface,” said Klima. “This internal magmatic water also provides clues about the moon’s volcanic processes and internal composition, which helps us address questions about how the moon formed, and how magmatic processes changed as it cooled.”

APL is a not-for-profit division of Johns Hopkins University. Joshua Cahill and David Lawrence of APL and Justin Hagerty of the U.S. Geological Survey’s Astrogeology Science Center in Flagstaff, Ariz., co-authored the paper. NASA’s Lunar Advanced Science and Engineering Program, the NASA Lunar Science Institute (NLSI) at Ames and the NASA Planetary Mission Data Analysis Program supported the research. NLSI is a virtual organization jointly funded by NASA’s Science Mission Directorate and NASA’s Human Exploration and Operations Mission Directorate in Washington, to enable collaborative, interdisciplinary research in support of NASA lunar science programs.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 1, 2014

Veterans: Substantial VA staff will face discipline - A substantial number of VA employees will face punishment for the veterans treatment scandal, the new national commander of the American Legion predicted Sept. 30, indicating that the slow pace of discipline has more to do with the hoops the department must jump through than it does a...
 
 

News Briefs October 1, 2014

Egypt president gives army control of arms imports The Egyptian president has amended a law, giving the country’s army control over weapons and ammunition imports. The Sept. 30 statement from the presidency says Abdel-Fattah el-Sissi changed articles stipulating that a permit for weapons’ imports has to be granted by the Interior Ministry, which is in...
 
 
atk-test

ATK successfully tests Orion launch abort motor igniter

NASA and ATK successfully completed a static test of the launch abort motor igniter for the Orion crew capsule’s Launch Abort System. Conducted at ATK’s facility in Promontory, Utah, this test is the next step towa...
 

 
uav-coalition

Small UAV coalition launched to advance commercial use of unmanned aerial vehicles

Leading technology companies Oct. 1 formally announced the formation of the Small UAV Coalition to help pave the way for commercial, philanthropic, and civil use of small unmanned aerial vehicles in the United States and abroad...
 
 
Navy photograph

NAWCWD manned for unmanned systems

Navy photograph A rail launch is performed during Integrator unmanned aerial vehicle testing at Naval Air Warfare Center Weapons Division China Lake, Calif. Naval Air Warfare Center Weapons Division scientists, engineers, techn...
 
 
NASA photograph by Ken Ulbrich

NASA employees go ‘above and beyond’

Courtesy photograph NASA Chief Scientist Albion Bowers, Christopher Miller and Nelson Brown receive the Exception Engineering Achievement Medal at Armstrong Research Center, Edwards Air Force Base, Calif. The prestigious award ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>