Space

August 31, 2013

NASA-funded scientists detect water on moon’s Surface that hints at water below

NASA-funded lunar research has yielded evidence of water locked in mineral grains on the surface of the moon from an unknown source deep beneath the surface.

Using data from NASA’s Moon Mineralogy Mapper (M3) instrument aboard the Indian Space Research Organization’s Chandrayaan-1 spacecraft, scientists remotely detected magmatic water, or water that originates from deep within the moon’s interior, on the surface of the moon.

The findings, published Aug. 25 in Nature Geoscience, represent the first detection of this form of water from lunar orbit. Earlier studies had shown the existence of magmatic water in lunar samples returned during the Apollo program.

M3 imaged the lunar impact crater Bullialdus, which lies near the lunar equator. Scientists were interested in studying this area because they could better quantify the amount of water inside the rocks due to the crater’s location and the type of rocks it held. The central peak of the crater is made up of a type of rock that forms deep within the lunar crust and mantle when magma is trapped underground.

“This rock, which normally resides deep beneath the surface, was excavated from the lunar depths by the impact that formed Bullialdus crater,” said Rachel Klima, a planetary geologist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

“Compared to its surroundings, we found that the central portion of this crater contains a significant amount of hydroxyl – a molecule consisting of one oxygen atom and one hydrogen atom — which is evidence that the rocks in this crater contain water that originated beneath the lunar surface,” Klima said.

In 2009, M3 provided the first mineralogical map of the lunar surface and discovered water molecules in the polar regions of the moon. This water is thought to be a thin layer formed from solar wind hitting the moon’s surface. Bullialdus crater is in a region with an unfavorable environment for solar wind to produce significant amounts of water on the surface.

“NASA missions like Lunar Prospector and the Lunar Crater Observation and Sensing Satellite and instruments like M3 have gathered crucial data that fundamentally changed our understanding of whether water exists on the surface of the moon,” said S. Pete Worden, center director at NASA’s Ames Research Center in Moffett Field, Calif. “Similarly, we hope that upcoming NASA missions such as the Lunar Atmosphere and Dust Environment Explorer, or LADEE, will change our understanding of the lunar sky.”

The detection of internal water from orbit means scientists can begin to test some of the findings from sample studies in a broader context, including in regions that are far from where the Apollo sites are clustered on the near side of the moon. For many years, researchers believed that the rocks from the moon were bone-dry and any water detected in the Apollo samples had to be contamination from Earth.

“Now that we have detected water that is likely from the interior of the moon, we can start to compare this water with other characteristics of the lunar surface,” said Klima. “This internal magmatic water also provides clues about the moon’s volcanic processes and internal composition, which helps us address questions about how the moon formed, and how magmatic processes changed as it cooled.”

APL is a not-for-profit division of Johns Hopkins University. Joshua Cahill and David Lawrence of APL and Justin Hagerty of the U.S. Geological Survey’s Astrogeology Science Center in Flagstaff, Ariz., co-authored the paper. NASA’s Lunar Advanced Science and Engineering Program, the NASA Lunar Science Institute (NLSI) at Ames and the NASA Planetary Mission Data Analysis Program supported the research. NLSI is a virtual organization jointly funded by NASA’s Science Mission Directorate and NASA’s Human Exploration and Operations Mission Directorate in Washington, to enable collaborative, interdisciplinary research in support of NASA lunar science programs.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 23, 2014

News: Israel’s Iron Dome defense in line for tripled U.S. spending - Israel’s iron Dome missile defense system may end up getting triple the U.S. funding that the Defense Department sought for it in March. Ukraine asked U.S. for systems to counter Russian missiles - A month before the United States says a Russian missile likely brought...
 
 

News Briefs July 23, 2014

U.S. military deaths in Afghanistan at 2,194 As of July 22, 2014, at least 2,194 members of the U.S. military had died in Afghanistan as a result of the U.S.-led invasion of Afghanistan in late 2001, according to an Associated Press count. The AP count is three less than the Defense Department’s tally. At least...
 
 
Raytheon photograph

Raytheon completes key Air, Missile Defense Radar reviews

Raytheon photograph Partially-populated, full-sized Air and Missile Defense Radar array. Raytheon has completed two critical program reviews for the new Air and Missile Defense Radar, the U.S. Navy’s next generation integ...
 

 
Insitu photograph

Insitu demonstrates long endurance capabilities of Integrator unmanned aircraft

Insitu photograph Insitu’s Integrator unmanned aircraft recovers via SkyHook; the aircraft recently completed a 24-hour endurance flight. Insitu announced July 22 the successful 24-hour flight of its Integrator unmanned a...
 
 

NASA partners punctuate summer with spacecraft development advances

Spacecraft and rocket development is on pace this summer for NASA’s aerospace industry partners for the agency’s Commercial Crew Program as they progress through systems testing, review boards and quarterly sessions under their† Space Act Agreements with the agency. NASA engineers and specialists continue their review of the progress as the agency and partners move...
 
 

U.S. Navy selects Northrop Grumman for ship self-defense system

The U.S. Navy has awarded Northrop Grumman a $12 million task order for a full range of engineering services to continue modernizing the Ship Self-Defense System Mark 2. The contract has a potential value of $61 million over five years, if all options are exercised. SSDS MK2 is a combat system designed for anti-air defense...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>