Tech

August 31, 2013

NASA tests limits of 3-D printing with powerful rocket engine check

The largest 3-D printed rocket engine component NASA ever has tested blazed to life Aug. 22 during an engine firing that generated a record 20,000 pounds of thrust.

This test is a milestone for one of many important advances the agency is making to reduce the cost of space hardware. Innovations like additive manufacturing, or 3-D printing, foster new and more cost-effective capabilities in the U.S. space industry.

The component tested during the engine firing, an injector, delivers propellants to power an engine and provides the thrust necessary to send rockets to space. During the injector test, liquid oxygen and gaseous hydrogen passed through the component into a combustion chamber and produced 10 times more thrust than any injector previously fabricated using 3-D printing.

“This successful test of a 3-D printed rocket injector brings NASA significantly closer to proving this innovative technology can be used to reduce the cost of flight hardware,” said Chris Singer, director of the Engineering Directorate at NASA’s Marshall Space Flight Center in Huntsville Ala.

The component was manufactured using selective laser melting. This method built up layers of nickel-chromium alloy powder to make the complex, subscale injector with its 28 elements for channeling and mixing propellants. The part was similar in size to injectors that power small rocket engines. It was similar in design to injectors for large engines, such as the RS-25 engine that will power NASA’s Space Launch System (SLS) rocket for deep space human missions to an asteroid and Mars.

“This entire effort helped us learn what it takes to build larger 3-D parts — from design, to manufacturing, to testing,” said Greg Barnett, lead engineer for the project. “This technology can be applied to any of SLS’s engines, or to rocket components being built by private industry.”

One of the keys to reducing the cost of rocket parts is minimizing the number of components. This injector had only two parts, whereas a similar injector tested earlier had 115 parts. Fewer parts require less assembly effort, which means complex parts made with 3-D printing have the potential for significant cost savings.

“We took the design of an existing injector that we already tested and modified the design so the injector could be made with a 3-D printer,” explained Brad Bullard, the propulsion engineer responsible for the injector design. “We will be able to directly compare test data for both the traditionally assembled injector and the 3-D printed injector to see if there’s any difference in performance.”

Early data from the test, conducted at pressures up to 1,400 pounds per square inch in a vacuum and at almost 6,000 degrees Fahrenheit, indicate the injector worked flawlessly. In the days to come, engineers will perform computer scans and other inspections to scrutinize the component more closely.

The injector was made by Directed Manufacturing Inc., of Austin, Texas, but NASA owns the injector design. NASA will make the test and materials data available to all U.S. companies through the Materials and Processes Information System database managed by Marshall’s materials and processes laboratory.

NASA seeks to advance technologies such as 3-D printing to make every aspect of space exploration more cost-effective. This test builds on prior hot-fire tests conducted with smaller injectors at Marshall and at NASA’s Glenn Research Center in Cleveland. Marshall engineers recently completed tests with Made in Space, a Moffett Field, Calif., company working with NASA to develop and test a 3-D printer that will soon print tools for the crew of the International Space Station. NASA is even exploring the possibility of printing food for long-duration space missions.

NASA is a leading partner in the National Network for Manufacturing Innovation and the Advanced Manufacturing Initiative, which explores using additive manufacturing and other advanced materials processes to reduce the cost of spaceflight. For more information about the National Network for Manufacturing Innovation, visit: http://manufacturing.gov/nnmi.html.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 23, 2015

News: Two Marines identified in deadly California helo crash - Two Marine Corps officers killed when their helicopter crashed during a training exercise in the Southern California desert were remembered Jan. 25 as talented pilots. Greek F-16 crashes in Spain during NATO exercise - Ten people died Jan. 26 after a Greek air force F-16 jet crashed...
 
 

News Briefs January 26, 2015

Navy wants to increase use of sonar-emitting buoys The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales. The Navy now wants to deploy up to 720 sonobuoys about 12 miles off...
 
 
Air National Guard photograph by SSgt. Annie Edwards

ANG conducts air refueling training with NATO allies in Germany

Air National Guard photograph by SSgt. Annie Edwards A NATO E-3A AWACS aircraft approaches a Utah Air National Guard KC-135R Stratotanker for air refueling during a training flight over Germany on Jan. 13, 2015. Nearly 30 airme...
 

 
Air Force photograph by SrA. Armando A. Schwier-Morales

Ramstein Airmen train with French air force

Air Force photograph by SrA. Armando A. Schwier-Morales Two U.S. Air Force pilots and a French air force navigator discuss the route to the drop zone during a simulated low-level drop Jan. 21, 2015, at Orleans – Bricy Air...
 
 

Marines receive first F-35C Lightning II carrier variant

The first F-35C Lightning II, carrier variant, for the U.S. Marine Corps touched-down on the flight line at Eglin Air Force Base, Fla., Jan. 13, from the Lockheed Martin plant in Fort Worth, Texas, to begin training in support of carrier-based operations. U.S. Marine Lt. Col. J.T. Ryan, Marine Fighter Attack Squadron 501 detachment commander...
 
 

VA announces single regional framework under MyVA initiative

The Department of Veterans Affairs announced Jan. 26 that it is taking the first steps under the MyVA initiative to realign its many organizational maps into one map with five regions to better serve Veterans. The new regions under the MyVA alignment will allow VA to begin the process of integrating disparate organizational boundaries into...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>