Business

September 18, 2013

Lockheed Martin successfully launches first LRASM boosted test vehicle from MK 41 vertical launch system

Lockheed Martin has successfully launched the first Long Range Anti-Ship Missile Boosted Test Vehicle from a MK 41 Vertical Launch System canister at White Sands Missile Range, N.M.

During the company-funded test, the MK 41 VLS successfully launched the LRASM BTV. The BTV, which includes the proven Vertical Launch Anti-Submarine Rocket Mk-114 rocket motor, ignited successfully, penetrated and exited through the canister cover and performed a guided flight profile similar to a tactical configuration.

The flight test was part of an ongoing Lockheed Martin-funded Offensive Anti-Surface Weapon effort, independent of the Defense Advanced Research Project Agency (DARPA) LRASM program, focused on shipboard integration of LRASM’s surface launched variant.

Building on the recent push-through testing which proved the missile’s ability to break through the canister cover with no damage to the missile, the BTV launch is also an important risk reduction milestone critical to demonstrating LRASM’s surface launch capability.

LRASM is an autonomous, precision-guided anti-ship standoff missile leveraging the successful Joint Air-to-Surface Standoff Missile Extended Range heritage, and is designed to meet the needs of U.S. Navy and Air Force warfighters.

“This successful flight test reduces the risk of LRASM and VLS integration,” said Scott Callaway, LRASM surface launch program manager at Lockheed Martin Missiles and Fire Control. “The test also validates the Mk-114 rocket motor’s capability to launch LRASM and the missile’s ability to cleanly exit the canister without damaging the missile coatings or composite structure.”

The BTV flight was the first time a Mk-114 rocket motor was used to launch LRASM.  The Mk-114 rocket motor is currently deployed as the rocket motor for the VL/ASROC, so this flight test verified that the Mk-114’s robust design can be used for heavy payloads with minimal software changes to the Digital Autopilot Controller.

Armed with a proven penetrator and blast-fragmentation warhead, LRASM cruises autonomously, day or night, in all weather conditions. The missile employs a multi-modal sensor, weapon data link and an enhanced digital anti-jam Global Positioning System to detect and destroy specific targets within a group of ships.

LRASM is in development with DARPA and the Office of Naval Research. Lockheed Martin’s offering has both surface launched and air launched variants to prosecute sea-based targets at significant standoff ranges.

Lockheed Martin Missiles and Fire Control is a 2012 recipient of the U.S. Department of Commerce’s Malcolm Baldrige National Quality Award for performance excellence. The Malcolm Baldrige Award represents the highest honor that can be awarded to American companies for achievement in leadership, strategic planning, customer relations, measurement, analysis, workforce excellence, operations and business results.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>