Tech

September 18, 2013

NASA Dryden engineers capture dramatic supersonic shockwave images

Supersonic shockwaves are clearly visible in this dramatic schlieren image of a NASA Dryden F/A-18 aircraft flying at a speed of Mach 1.1, and an altitude of 44,000 feet during a GASPS flight.

 

Elusive schlieren images of supersonic shockwaves emanating from NASA F-15 and F/A-18 aircraft flying at supersonic speeds were captured during recent pilot proficiency flights.

The images were gathered by a twin telescope and digital camera system on the ground at NASA’s Dryden Flight Research Center to manually test the Ground-to-Air Schlieren Photography System, or GASPS, that was developed by MetroLaser, Inc. under a NASA Small Business Innovation Research project. Schlieren photography is a technique that enables imaging of airflow, with special illumination making changes in air density—in this case the density of the shockwaves—apparent.

“Our team was able to photograph truly spectacular images showing the shockwaves of full-scale supersonic aircraft in flight,” said Ed Haering, Dryden’s GASPS principal investigator.

This dramatic schlieren image of supersonic shockwaves streaming from NASA Dryden’s F-15B aircraft was captured while it was flying at Mach 1.38 at 44,000 feet altitude during a GASPS flight.

“For new quiet supersonic aircraft designs, computer simulations and wind tunnel tests are used to model how to minimize the loudness of the sonic booms, but the simulations and wind tunnel tests have challenges in accurately modeling the flow around engine inlet and tail regions,” Haering explained. “We can use these images to validate our computer simulations and wind tunnel tests, giving us confidence that we can properly design supersonic civil aircraft of the future. Then we will be able to fly over land at about double the speed of current civil aircraft without bothering people on the ground,” he added.

Engineers used a thumb trigger to manually snap digital images when the aircraft passed in front of the sun. Later tests will most likely use aircraft GPS tracking transmitted to the GASPS system on the ground to automatically activate their shutters for more precise imaging.

Previous schlieren photography used an elaborate series of lenses, bright backlighting, and other devices to capture supersonic shockwaves on film as darker or lighter streaks against high-contrast backgrounds like the edge of the sun. Versions of this ground-to-air technique used in the 1990’s required extremely precise alignment of the optics as well.

In contrast, the GASPS project uses just a telescope and a digital camera, leaving the difficult aspects of the work to be performed post-flight using image processing software. This improved method greatly relaxes the precision needed, with the post-mission digital processing of the imagery employed to visualize the shock wave patterns.

With the sun as the light source, supersonic shockwaves are clearly visible in this spectacular schlieren image of NASA Dryden’s F-15B Research Testbed aircraft as it streaks by at Mach 1.2 at an altitude of 40,000 feet during a GASPS flight.

Schlieren imaging provides a clearer understanding of the location and relative strength of supersonic shockwaves. This represents another tool in the growing toolbox of techniques used by NASA researchers designed to characterize sonic booms.

This latest project continues a long series of sonic boom reduction research by NASA.  The 10th anniversary of the NASA/Northrop Grumman F-5E Shaped Sonic Boom Demonstration (SSBD) project’s first reduced sonic boom flight was Aug. 27, marking another milestone in NASA and industry’s path to lower sonic booms. A new NASA aeronautics book, “Quieting the Boom: the Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight,” by Lawrence R. Benson details the project. The book was recently posted on-line as a NASA eBook at http://www.nasa.gov/connect/ebooks/nasa-ebook-quieting-the-boom/.

The GASPS project is supported by the NASA Aeronautics Research Mission Directorate’s High Speed Project, which is working to reduce the intensity of sonic booms in order to make commercial supersonic flight over land practical.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 23, 2015

News: Obama says more troops will stay in Afghanistan next year - President Obama March 24 formally abandoned his pledge to bring U.S. troop levels in Afghanistan down to 5,000 by the end of this year, saying the current force of about 10,000 will remain there into 2016.   Business: U.S. special ops to sole-source 2,000...
 
 

News Briefs March 25, 2015

Pentagon notifying U.S. troops named by alleged IS hackers The Pentagon said March 23 it is notifying 100 U.S. military members that their names and addresses were posted on the Internet by a group calling itself the Islamic State Hacking Division. The group said it was posting the information, including photos of the individuals, to...
 
 
Courtesy photograph

Lockheed Martin acquires high-speed wind tunnel, plans upgrades

Courtesy photograph A RATTLRS cruise-missile inlet undergoes testing at the High Speed Wind Tunnel at Lockheed Martin Missiles and Fire Control in Grand Prairie. Lockheed Martin recently purchased the facility and plans numerou...
 

 
Lockheed Martin photograph by Andrew McMurtrie

Off they go: Three more C-130Js delivered

Lockheed Martin photograph by Andrew McMurtrie March 19, a U.S. Air Force crew took delivery of and ferried an MC-130J Commando II Special Operations tanker aircraft that is assigned to Air Force Special Operations Command’s ...
 
 

Northrop to provide DIRCM for Canadian Chinook fleet

Northrop Grumman has been selected by the Royal Canadian Air Force to provide infrared missile protection on its fleet of CH-147F Chinooks. “Battle-tested in the harshest conditions and in use around the world, Northrop Grumman’s infrared countermeasure systems have been protecting warfighters for more than 50 years,” said Carl Smith, vice president, infrared countermeasures, ...
 
 

UTC Aerospace awarded contract for surface ship sonar domes

UTC Aerospace Systems has received a contract from the Naval Surface Warfare Center – Crane, Indiana, to provide sonar domes for surface combat ships. The five-year indefinite delivery, indefinite quantity contract is valued at up to $39 million and covers deliveries through 2020 to the U.S. Navy and foreign military sales. In addition to the...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>