Space

September 25, 2013

NASA, Homeland Security test radar for locating disaster victims

NASA and the U.S. Department of Homeland Security are collaborating on a first-of-its-kind portable radar device to detect the heartbeats and breathing patterns of victims trapped in large piles of rubble resulting from a disaster.

The prototype technology, called Finding Individuals for Disaster and Emergency Response can locate individuals buried as deep as 30 feet in crushed materials, hidden behind 20 feet of solid concrete, and from a distance of 100 feet in open spaces.

Developed in conjunction with Homeland Security’s Science and Technology Directorate, FINDER is based on remote-sensing radar technology developed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., to monitor the location of spacecraft JPL manages for NASA’s Science Mission Directorate in Washington.

“FINDER is bringing NASA technology that explores other planets to the effort to save lives on ours,” said Mason Peck, chief technologist for NASA, and principal advisor on technology policy and programs. “This is a prime example of intergovernmental collaboration and expertise that has a direct benefit to the American taxpayer.”

The technology was demonstrated to the media Wednesday at the DHS’s Virginia Task Force 1 Training Facility in Lorton, Va. Media participated in demonstrations that featured the device locating volunteers hiding under heaps of debris. FINDER also will be tested further by the Federal Emergency Management Agency this year and next.

“The ultimate goal of FINDER is to help emergency responders efficiently rescue victims of disasters,” said John Price, program manager for the First Responders Group in Homeland Security’s Science and Technology Directorate in Washington. “The technology has the potential to quickly identify the presence of living victims, allowing rescue workers to more precisely deploy their limited resources.”

The technology works by beaming microwave radar signals into the piles of debris and analyzing the patterns of signals that bounce back. NASA’s Deep Space Network regularly uses similar radar technology to locate spacecraft. A light wave is sent to a spacecraft, and the time it takes for the signal to get back reveals how far away the spacecraft is. This technique is used for science research, too. For example, the Deep Space Network monitors the location of the Cassini mission’s orbit around Saturn to learn about the ringed planet’s internal structure.

“Detecting small motions from the victim’s heartbeat and breathing from a distance uses the same kind of signal processing as detecting the small changes in motion of spacecraft like Cassini as it orbits Saturn,” said James Lux, task manager for FINDER at JPL.

In disaster scenarios, the use of radar signals can be particularly complex. Earthquakes and tornadoes produce twisted and shattered wreckage, such that any radar signals bouncing back from these piles are tangled and hard to decipher. JPL’s expertise in data processing helped with this challenge. Advanced algorithms isolate the tiny signals from a person’s moving chest by filtering out other signals, such as those from moving trees and animals.

Similar technology has potential applications in NASA’s future human missions to space habitats. The astronauts’ vital signs could be monitored without the need for wires.

The Deep Space Network, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions.




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA Ames/JPL-Caltech/T Pyle

NASA’s Kepler reborn, makes first exoplanet find of new mission

Image courtesy of NASA Ames/JPL-Caltech/T Pyle The artistic concept shows NASA’s planet-hunting Kepler spacecraft operating in a new mission profile called K2. Using publicly available data, astronomers have confirmed K2&...
 
 
NASA illustration

NASA, planetary scientists find meteoritic evidence of Mars water reservoir

This illustration depicts Martian water reservoirs. Recent research provides evidence for the existence of a third reservoir that is intermediate in isotopic composition between the Red Planetís mantle and its current atmosphe...
 
 
Lockheed Martin photograph

Lockheed Martin-built MUOS-3 satellite encapsulated in launch vehicle fairing

Lockheed Martin photograph The U.S. Navy’s Mobile User Objective System-3 satellite (above) is encapsulated in its payload fairings for a scheduled Jan. 20, 2015 launch aboard a United Launch Alliance Atlas V rocket. MUOS ope...
 

 
NASA photograph

NASA’s Orion arrives back at Kennedy

NASA photograph NASA’s Orion spacecraft returned to the agency’s Kennedy Space Center in Florida Dec. 18, 2014. The spacecraft flew to an altitude of 3,600 miles in space during a Dec. 5 flight test designed to stre...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>