Business

September 25, 2013

Pratt & Whitney advancing sixth generation military engine technology

Pratt & Whitney and the U.S. Air Force Research Laboratory have begun testing of Pratt & Whitney’s unique, adaptive supersonic fighter engine fan rig based on a full-scale F135 development fan to advance the next generation of military fighter engine technology.

The purpose of the adaptive fan rig test is to mature technologies associated with adaptive bypass flow associated with a third stream of air, which will enable efficiency improvements in long-range persistence and high thrust combat maneuvers as well as in transonic and supersonic flight conditions.

Pratt & Whitney is a United Technologies Corp. company.

Similar to changing gears in a car or on a bicycle, changing an aircraft engine’s bypass ratio allows the engine to be optimized for high thrust takeoffs, while maintaining the efficiency of a commercial airline’s high bypass engine in cruise conditions. Unlike commercial airline engines which are attached to the wing, engines used in modern fighter aircraft must use smaller diameter turbofans and be embedded within the aircraft. Consequently, there is a performance tradeoff between high thrust capabilities and optimum efficiency experienced in cruise conditions. Developing a next generation variable cycle adaptive engine is therefore essential to meeting the evolving needs of the warfighter.

Modern military turbofan engines have two airstreams – one that passes through the core of the engine, and another that bypasses the core. Development of a third stream of airflow will allow for improved fuel efficiency and cooler heat sinks which improve thermal management of the air system and reduced heat signature.

“Developing an effective adaptive fan concept is a critical step in advancing technology that will ensure next generation air dominance for our military,” said Jack Hoying, program manager, Air Force Research Laboratory. “We are working closely with our industry partners to develop game-changing technologies that will truly advance the state of the art for military engines in the 21st Century.”

The adaptive fan variable cycle technology will leverage and improve upon Pratt & Whitney’s baseline experience in building and fielding 5th generation fighter engines – the F119 that powers the F-22 Raptor, and the F135 powering the F-35 Lightning II, according to Bennett Croswell, president, P&W Military Engines.

“Pratt & Whitney has an innovative approach to achieving variable cycle features with a multiple flow path architecture,” said Croswell. “We’re building on our foundation of proven 5th generation capabilities, and we are now mastering adaptive technologies – really expanding the boundaries of state of the art engine technology critical for the next 6th generation aircraft.”

The fan rig test is being conducted in tandem with several other technology initiatives that are advancing the state of military engine technology, including the AFRL-sponsored Adaptive Engine Technology Demonstration (AETD) program, the U.S. Navy Fuel Burn Reduction (FBR) program, and other internal Pratt & Whitney advanced engine concept efforts.

The AETD program has a goal of providing a 25 percent improvement in specific fuel consumption and a 10 percent improvement in thrust levels compared to today’s fifth-generation combat aircraft engines. The FBR demonstration program is focused on delivering a 5+ percent reduction in fuel burn in an F135 demonstration engine.

The adaptive fan rig tests are being conducted at the AFRL Compressor Research Facility in Dayton, Ohio. The jointly-funded program was launched in late 2011, with tests of the adaptive fan concept taking place from August through September 2013. Following testing, the combined Pratt & Whitney and AFRL team will conduct additional processing and engine test analysis.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>