Business

September 25, 2013

Pratt & Whitney advancing sixth generation military engine technology

Pratt & Whitney and the U.S. Air Force Research Laboratory have begun testing of Pratt & Whitney’s unique, adaptive supersonic fighter engine fan rig based on a full-scale F135 development fan to advance the next generation of military fighter engine technology.

The purpose of the adaptive fan rig test is to mature technologies associated with adaptive bypass flow associated with a third stream of air, which will enable efficiency improvements in long-range persistence and high thrust combat maneuvers as well as in transonic and supersonic flight conditions.

Pratt & Whitney is a United Technologies Corp. company.

Similar to changing gears in a car or on a bicycle, changing an aircraft engine’s bypass ratio allows the engine to be optimized for high thrust takeoffs, while maintaining the efficiency of a commercial airline’s high bypass engine in cruise conditions. Unlike commercial airline engines which are attached to the wing, engines used in modern fighter aircraft must use smaller diameter turbofans and be embedded within the aircraft. Consequently, there is a performance tradeoff between high thrust capabilities and optimum efficiency experienced in cruise conditions. Developing a next generation variable cycle adaptive engine is therefore essential to meeting the evolving needs of the warfighter.

Modern military turbofan engines have two airstreams – one that passes through the core of the engine, and another that bypasses the core. Development of a third stream of airflow will allow for improved fuel efficiency and cooler heat sinks which improve thermal management of the air system and reduced heat signature.

“Developing an effective adaptive fan concept is a critical step in advancing technology that will ensure next generation air dominance for our military,” said Jack Hoying, program manager, Air Force Research Laboratory. “We are working closely with our industry partners to develop game-changing technologies that will truly advance the state of the art for military engines in the 21st Century.”

The adaptive fan variable cycle technology will leverage and improve upon Pratt & Whitney’s baseline experience in building and fielding 5th generation fighter engines – the F119 that powers the F-22 Raptor, and the F135 powering the F-35 Lightning II, according to Bennett Croswell, president, P&W Military Engines.

“Pratt & Whitney has an innovative approach to achieving variable cycle features with a multiple flow path architecture,” said Croswell. “We’re building on our foundation of proven 5th generation capabilities, and we are now mastering adaptive technologies – really expanding the boundaries of state of the art engine technology critical for the next 6th generation aircraft.”

The fan rig test is being conducted in tandem with several other technology initiatives that are advancing the state of military engine technology, including the AFRL-sponsored Adaptive Engine Technology Demonstration (AETD) program, the U.S. Navy Fuel Burn Reduction (FBR) program, and other internal Pratt & Whitney advanced engine concept efforts.

The AETD program has a goal of providing a 25 percent improvement in specific fuel consumption and a 10 percent improvement in thrust levels compared to today’s fifth-generation combat aircraft engines. The FBR demonstration program is focused on delivering a 5+ percent reduction in fuel burn in an F135 demonstration engine.

The adaptive fan rig tests are being conducted at the AFRL Compressor Research Facility in Dayton, Ohio. The jointly-funded program was launched in late 2011, with tests of the adaptive fan concept taking place from August through September 2013. Following testing, the combined Pratt & Whitney and AFRL team will conduct additional processing and engine test analysis.




All of this week's top headlines to your email every Friday.


 
 

 

Navy Awards General Dynamics contract for LCS planning yard services

The U.S. Navy awarded General Dynamics Bath Iron Works a $100 million contract to provide planning yard services for the Littoral Combat Ship program. General Dynamics Bath Iron Works is a business unit of General Dynamics. Bath Iron Works, as the LCS Planning Yard, will provide maintenance and modernization support for all Navy LCS 1...
 
 
boeing-boc

Boeing, BOC Aviation announce order for 82 airplanes

  Boeing announced Aug. 25 an order by BOC Aviation for 50 737 MAX 8s, 30 Next-Generation 737-800s and two 777-300ERs (Extended Range). The order, valued at $8.8 billion at list prices, is the largest in BOC Aviation’...
 
 

F-35 flight test program milestones maturing combat capabilities

The Lockheed Martin F-35 Joint Strike Fighter program continued a steady path of flight test milestones in August, including weapons separation, software compatibility and flight hours, all demonstrating program maturity. “The test milestones are a direct result of the detailed planning, coordination and execution between various government teams and the integrated test force,” said...
 

 
Boeing photograph

Boeing program completes critical design, safety reviews

Boeing photograph Boeing recently completed the Phase Two Spacecraft Safety Review of its Crew Space Transportation-100 spacecraft and the Critical Design Review of its integrated systems, meeting all of the companyís Commerci...
 
 
LM-C130

Keep on Rockin’: C-130J ferries to Little Rock AFB

  The 61st Airlift Squadron at Little Rock Air Force Base, Ark., received another Lockheed Martin C-130J Super Hercules airlifter Aug. 21.  Brig. Gen. Brian Robinson, vice commander, 618th Air and Space Operations Center ...
 
 

Air Force tests Raytheon’s upgraded High-Speed Anti-Radiation Missile

Raytheon Company and the U.S. Air Force successfully flight tested an upgraded High-Speed Anti-Radiation Missile. The HARM Control Section Modification is more precise and accurate, which reduces potential collateral damage. During this test mission, an F-16 aircraft fired an HCSM, AGM-88F, against an emitter located outside of a zone of exclusion, which contained a similar...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>