Business

September 25, 2013

Pratt & Whitney advancing sixth generation military engine technology

Pratt & Whitney and the U.S. Air Force Research Laboratory have begun testing of Pratt & Whitney’s unique, adaptive supersonic fighter engine fan rig based on a full-scale F135 development fan to advance the next generation of military fighter engine technology.

The purpose of the adaptive fan rig test is to mature technologies associated with adaptive bypass flow associated with a third stream of air, which will enable efficiency improvements in long-range persistence and high thrust combat maneuvers as well as in transonic and supersonic flight conditions.

Pratt & Whitney is a United Technologies Corp. company.

Similar to changing gears in a car or on a bicycle, changing an aircraft engine’s bypass ratio allows the engine to be optimized for high thrust takeoffs, while maintaining the efficiency of a commercial airline’s high bypass engine in cruise conditions. Unlike commercial airline engines which are attached to the wing, engines used in modern fighter aircraft must use smaller diameter turbofans and be embedded within the aircraft. Consequently, there is a performance tradeoff between high thrust capabilities and optimum efficiency experienced in cruise conditions. Developing a next generation variable cycle adaptive engine is therefore essential to meeting the evolving needs of the warfighter.

Modern military turbofan engines have two airstreams – one that passes through the core of the engine, and another that bypasses the core. Development of a third stream of airflow will allow for improved fuel efficiency and cooler heat sinks which improve thermal management of the air system and reduced heat signature.

“Developing an effective adaptive fan concept is a critical step in advancing technology that will ensure next generation air dominance for our military,” said Jack Hoying, program manager, Air Force Research Laboratory. “We are working closely with our industry partners to develop game-changing technologies that will truly advance the state of the art for military engines in the 21st Century.”

The adaptive fan variable cycle technology will leverage and improve upon Pratt & Whitney’s baseline experience in building and fielding 5th generation fighter engines – the F119 that powers the F-22 Raptor, and the F135 powering the F-35 Lightning II, according to Bennett Croswell, president, P&W Military Engines.

“Pratt & Whitney has an innovative approach to achieving variable cycle features with a multiple flow path architecture,” said Croswell. “We’re building on our foundation of proven 5th generation capabilities, and we are now mastering adaptive technologies – really expanding the boundaries of state of the art engine technology critical for the next 6th generation aircraft.”

The fan rig test is being conducted in tandem with several other technology initiatives that are advancing the state of military engine technology, including the AFRL-sponsored Adaptive Engine Technology Demonstration (AETD) program, the U.S. Navy Fuel Burn Reduction (FBR) program, and other internal Pratt & Whitney advanced engine concept efforts.

The AETD program has a goal of providing a 25 percent improvement in specific fuel consumption and a 10 percent improvement in thrust levels compared to today’s fifth-generation combat aircraft engines. The FBR demonstration program is focused on delivering a 5+ percent reduction in fuel burn in an F135 demonstration engine.

The adaptive fan rig tests are being conducted at the AFRL Compressor Research Facility in Dayton, Ohio. The jointly-funded program was launched in late 2011, with tests of the adaptive fan concept taking place from August through September 2013. Following testing, the combined Pratt & Whitney and AFRL team will conduct additional processing and engine test analysis.




All of this week's top headlines to your email every Friday.


 
 

 
NG-people2

Northrop Grumman names VP, mission assurance for Electronic Systems sector

Northrop Grumman has appointed Sonal B. Deshpande vice president of mission assurance for the company’s Linthicum-based Electronic Systems sector. In this position, Deshpande is responsible for mission assurance across th...
 
 
sikorsky-raider

Sikorsky S-97 Raider helicopter achieves successful first flight

Sikorsky Aircraft Corp., a United Technologies Corp. subsidiary, announced May 22 the successful first flight of the S-97 Raider™ helicopter, a rigid coaxial rotor prototype designed to demonstrate a game-changing combination...
 
 
NG-people

Northrop Grumman appoints VP, program manager ISR division

Northrop Grumman announced it has appointed Steve Lunny, vice president and program manager for the intelligence, surveillance and reconnaissance division within the company’s Information Systems sector. Lunny will report...
 

 

HELLADS laser completes development

General Atomics Aeronautical Systems, Inc. announced May 21 that the High-Energy Liquid Laser completed the U.S. government acceptance test procedure and is now being shipped to the White Sands Missile Range, N.M. At WSMR, the laser will undergo an extensive series of live fire tests against a number of military targets.  GAASI is a leading...
 
 
boeing-transaero

Boeing delivers Transaero’s first Next-Generation 737-800

Boeing May 22 delivered Transaero’s first Next-Generation 737-800. The airplane, sporting a new livery, arrived at Moscow’s Domodedovo Airport. Boeing May 22 delivered Transaero’s first Next-Generation 737-800. The airpla...
 
 
Boeing photograph

Boeing-upgraded French AWACS take flight

Boeing photograph A French AWACS aircraft patrols the skies as part of a routine mission. The French AWACS fleet is in the midst of the Mid-Life Upgrade that modernizes the capabilities on board. Initial operating capability of...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>