Defense

October 4, 2013

Army lab finding better ways to convert JP-8 to hydrogen for portable electric power

army-jp8a

What if soldiers could convert JP-8 to clean hydrogen fuel for fuel cell applications anywhere and anytime they need it?

A small team of scientists at the U.S. Army Research Laboratory are collaborating with counterparts at the Communications-Electronics and the Tank Automotive Research, Development and Engineering Centers, to develop technology for lightweight, portable prototype systems that would convert Jet Propellant 8, commonly referred to as JP-8, to hydrogen on the spot.

“There is a growing demand for portable electrical power for both commercial and military applications,” said Dr. Deryn Chu, fuel cell team leader. “Our challenge is ‘How can we remove the many impurities in JP-8 so it can be effective in a fuel cell?'”

JP-8 is widely used by the U.S. Army as a fuel for powering aircraft, engines of tactical ground vehicles and electrical generators. It comes with a set of problems like the logistics resupply chain it requires, and the high cost associated with force protection of convoys, he said.

The Pentagon’s most-used jet fuel costs roughly $15 per gallon, but “… the cost multiplies to hundreds of dollars by the time you move it to and around operational locations,” Chu said.

army-jp8b

For the Army “… the smallest gain in efficiency is important. But fuel cells – when the concept is fully developed – may yield huge gains, potentially doubling the efficiency of diesel generators,” he said.

The chance for a game-changing technology is why fuel reformation is one of three high-risk, high-reward projects that the laboratory is pushing toward in search of operational energy solutions for the battlefield. Smart Battlefield Energy on-Demand and Long-Lived Power were also highlighted in this four-part series.

Researchers already knew the value of fuel cells for increasing efficiency, as that kind of approach has been explored since the 1960s. They also knew of ways to convert the high-energy density of hydrocarbons into hydrogen for fuel cells like the process that Bloom Energy and others use on the commercial market, said Dr. Zachary Dunbar, a team member who is exploring palladium membrane technology, using a rare metallic element as part of a purification system.

The challenge is developing a practical fuel reformation process for better energy conversion that would have to be portable, quick and easy to use, he said.

Last year, Army Research Laboratory’s research reached a milestone when they figured out a way to reduce the production costs associated with fuel reformation by using palladium membranes to purify hyrogen rich reformate, Dunbar said.

army-jp8c

In their work, scientists developed a new supported palladium membrane composite structure for purification technology to produce high-purity hydrogen from a feedstock of hydrocarbon fuel. Before this discovery, designing affordable, leak free, and high-flux membranes was much more difficult, he said.

“While it is a significant milestone, the research is in its early stages. Fuel reforming is a complex problem that we don’t expect to solve quickly,” Dunbar said.

The team tests materials that may reduce the sulfur concentration in JP-8. Dr. Dat Tran has tested at least 300 different combinations of materials during the last four years he has been investigating with the team, he said.

“JP-8 is a complicated and dirty fuel. The sulfur is a huge problem because it can hurt the fuel cells,” Tran said. “Sulfur has many different compounds that behave differently. The compounds in sulfur make it hard to find an agreeable material.”

JP-8 is a logistical fuel for the Department of Defense under its one-fuel policy. It is a unique problem for the Army. Industry is focused on natural gas, Chu said.

The U.S. Army Research, Development and Engineering Command’s Communications-Electronics Center, Command, Power and Integration, or CERDEC CP&I, experts are integral to the research because they transition mobile power systems from the lab to the field, said Dr. Terry Dubois, fuel reforming and combustion engineer at CERDEC.

army-jp8e

Everything from man-worn to multikilowatt systems comes through CERDEC, he said.

CERDEC CP&I enables the quick transition of optimum capabilities to the warfighter in support of ongoing operations.

Army units often wind up in places overseas with no infrastructure and limited supplies. The Army needs to explore and develop high-efficient fuel cell systems to reduce logistical supply. Scientists continue to grapple with the question of the best way to rid JP-8 of its organic sulfur compounds after it is in theater, Chu said.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph by Chad Bellay

F-16 test pilots hit the ‘road’ to help train USAFE pilots

Air Force photograph by Airman 1st Class Kyla Gifford Three F-16s assigned to Spangdahlem Air Base, Germany, on a refueling mission last year. Two F-16 test pilots from the 416th Flight Test Squadron recently returned from a &#...
 
 
Navy photograph

Its reign in the fleet over, naval Sea King helicopter now rests at Pax Museum

Navy photograph At more than 54 feet in length with a 62-foot rotor diameter, the mighty SH-3A Sea King helicopter sits in its final spot at the Patuxent River Naval Air Museum. Designed as an anti-submarine warfare helicopter,...
 
 
Navy photograph by John F. Williams

ONR testing high-speed planing hulls

Navy photograph by John F. Williams A ship hull model attached to a high-speed sled moves through waves at the David Taylor Model Basin at Naval Surface Warfare Center, Carderock, during Office of Naval Research -sponsored rese...
 

 
af-spacex

Air Force certifies SpaceX for national security space missions

Lt. Gen. Samuel Greaves, commander of the Air Force Space and Missile Systems Center and Air Force program executive officer for space, has announced the certification of Space Exploration Technologies Corporation’s Falco...
 
 
Army photograph

Army’s mid-tier radio advances battlefield network

Army photograph The mid-tier networking vehicular radio, or MNVR, is being tested extensively, including a limited user test, which was conducted this month at Network Integration Evaluation 15.2. This soldier is operating the ...
 
 
DARPA photograph

Human-robot teams compete June 5 at DARPA finals

DARPA photograph Team KAIST, from Daejeon, South Korea, and its robot DRC-HUBO negotiate mock rubble at a test site March 6, 2015. DARPA photo   In eight days, 25 human-robot teams will compete on the rubble-strewn field of a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>