Defense

October 4, 2013

Army lab finding better ways to convert JP-8 to hydrogen for portable electric power

army-jp8a

What if soldiers could convert JP-8 to clean hydrogen fuel for fuel cell applications anywhere and anytime they need it?

A small team of scientists at the U.S. Army Research Laboratory are collaborating with counterparts at the Communications-Electronics and the Tank Automotive Research, Development and Engineering Centers, to develop technology for lightweight, portable prototype systems that would convert Jet Propellant 8, commonly referred to as JP-8, to hydrogen on the spot.

“There is a growing demand for portable electrical power for both commercial and military applications,” said Dr. Deryn Chu, fuel cell team leader. “Our challenge is ‘How can we remove the many impurities in JP-8 so it can be effective in a fuel cell?’”

JP-8 is widely used by the U.S. Army as a fuel for powering aircraft, engines of tactical ground vehicles and electrical generators. It comes with a set of problems like the logistics resupply chain it requires, and the high cost associated with force protection of convoys, he said.

The Pentagon’s most-used jet fuel costs roughly $15 per gallon, but “… the cost multiplies to hundreds of dollars by the time you move it to and around operational locations,” Chu said.

army-jp8b

For the Army “… the smallest gain in efficiency is important. But fuel cells – when the concept is fully developed – may yield huge gains, potentially doubling the efficiency of diesel generators,” he said.

The chance for a game-changing technology is why fuel reformation is one of three high-risk, high-reward projects that the laboratory is pushing toward in search of operational energy solutions for the battlefield. Smart Battlefield Energy on-Demand and Long-Lived Power were also highlighted in this four-part series.

Researchers already knew the value of fuel cells for increasing efficiency, as that kind of approach has been explored since the 1960s. They also knew of ways to convert the high-energy density of hydrocarbons into hydrogen for fuel cells like the process that Bloom Energy and others use on the commercial market, said Dr. Zachary Dunbar, a team member who is exploring palladium membrane technology, using a rare metallic element as part of a purification system.

The challenge is developing a practical fuel reformation process for better energy conversion that would have to be portable, quick and easy to use, he said.

Last year, Army Research Laboratory’s research reached a milestone when they figured out a way to reduce the production costs associated with fuel reformation by using palladium membranes to purify hyrogen rich reformate, Dunbar said.

army-jp8c

In their work, scientists developed a new supported palladium membrane composite structure for purification technology to produce high-purity hydrogen from a feedstock of hydrocarbon fuel. Before this discovery, designing affordable, leak free, and high-flux membranes was much more difficult, he said.

“While it is a significant milestone, the research is in its early stages. Fuel reforming is a complex problem that we don’t expect to solve quickly,” Dunbar said.

The team tests materials that may reduce the sulfur concentration in JP-8. Dr. Dat Tran has tested at least 300 different combinations of materials during the last four years he has been investigating with the team, he said.

“JP-8 is a complicated and dirty fuel. The sulfur is a huge problem because it can hurt the fuel cells,” Tran said. “Sulfur has many different compounds that behave differently. The compounds in sulfur make it hard to find an agreeable material.”

JP-8 is a logistical fuel for the Department of Defense under its one-fuel policy. It is a unique problem for the Army. Industry is focused on natural gas, Chu said.

The U.S. Army Research, Development and Engineering Command’s Communications-Electronics Center, Command, Power and Integration, or CERDEC CP&I, experts are integral to the research because they transition mobile power systems from the lab to the field, said Dr. Terry Dubois, fuel reforming and combustion engineer at CERDEC.

army-jp8e

Everything from man-worn to multikilowatt systems comes through CERDEC, he said.

CERDEC CP&I enables the quick transition of optimum capabilities to the warfighter in support of ongoing operations.

Army units often wind up in places overseas with no infrastructure and limited supplies. The Army needs to explore and develop high-efficient fuel cell systems to reduce logistical supply. Scientists continue to grapple with the question of the best way to rid JP-8 of its organic sulfur compounds after it is in theater, Chu said.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 28, 2014

News: After F-15 jet crash in Virginia, rescue helicopters search for pilot - Helicopters are searching for an Air National Guard pilot after his F-15 jet crashed in the mountains of Virginia this morning, military officials said.   Business: U.S. Air Force 3DELRR contract expected soon - The U.S. Air Force could award the contract for its...
 
 

News Briefs August 28, 2014

Russian directing new offensive in Ukraine The Obama administration believes Russia is leading a new military counteroffensive in Ukraine. U.S. State Department spokeswoman Jen Psaki says Russia has sent additional columns of tanks and armored vehicles into its neighbor’s territory. She says the incursions suggest a ìRussian-directed counteroffensive is likely underway in the contested e...
 
 
LM-C5

Double Deuce

A U.S. Air Force crew ferried the 22nd C-5M Super Galaxy from the Lockheed Martin facilities in Marietta, Ga., Aug. 25. Aircraft 86-0011 was ferried by a crew led by Maj. Gen. Dwyer L. Dennis, Director, Global Reach Programs, O...
 

 
Northrop Grumman photograph

First ever RQ-4 Global Hawk hits 100th flight on NASA mission

Northrop Grumman photograph A historical look at the first Global Hawk (AV1) during its maiden flight over Edwards Air Force Base, Calif., on Feb. 28, 1998. AV1 has made history again with its 100th flight in support of NASA en...
 
 

Northrop Grumman’s CIRCM system completes U.S. Army flight testing

Northrop Grumman’s Common Infrared Countermeasures system recently completed another round of U.S. Army testing by demonstrating its capabilities on a UH-60M Black Hawk helicopter. The flight test was conducted at Redstone Arsenal in Huntsville, Ala., by the Redstone Test Center. The Northrop Grumman CIRCM system was subjected to rigorous conditions over a six-week period, after...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>