Space

October 23, 2013

NASA laser communication system sets record with data transmissions to and from Moon

NASA’s Lunar Laser Communication Demonstration has made history using a pulsed laser beam to transmit data over the 239,000 miles between the moon and Earth at a record-breaking download rate of 622 megabits per second.

LLCD is NASA’s first system for two-way communication using a laser instead of radio waves. It also has demonstrated an error-free data upload rate of 20 Mbps transmitted from the primary ground station in New Mexico to the spacecraft currently orbiting the moon.

“LLCD is the first step on our roadmap toward building the next generation of space communication capability,” said Badri Younes, NASA’s deputy associate administrator for space communications and navigation in Washington. “We are encouraged by the results of the demonstration to this point, and we are confident we are on the right path to introduce this new capability into operational service soon.”

Since NASA first ventured into space, it has relied on radio frequency communication. However, RF is reaching its limit as demand for more data capacity continues to increase. The development and deployment of laser communications will enable NASA to extend communication capabilities such as increased image resolution and 3-D video transmission from deep space.

“The goal of LLCD is to validate and build confidence in this technology so that future missions will consider using it,” said Don Cornwell, LLCD manager at NASA’s Goddard Space Flight Center in Greenbelt, Md. “This unique ability developed by the Massachusetts Institute of Technology’s Lincoln Laboratory has incredible application possibilities.”

LLCD is a short-duration experiment and the precursor to NASA’s long-duration demonstration, the Laser Communications Relay Demonstration. LCRD is a part of the agency’s Technology Demonstration Missions Program, which is working to develop crosscutting technology capable of operating in the rigors of space. It is scheduled to launch in 2017.

LLCD is hosted aboard NASA’s Lunar Atmosphere and Dust Environment Explorer, launched in September from NASA’s Wallops Flight Facility on Wallops Island, Va. LADEE is a 100-day robotic mission operated by the agency’s Ames Research Center at Moffett Field, Calif. LADEE’s mission is to provide data that will help NASA determine whether dust caused the mysterious glow astronauts observed on the lunar horizon during several Apollo missions. It also will explore the moon’s atmosphere. Ames designed, developed, built, integrated and tested LADEE, and manages overall operations of the spacecraft. NASA’s Science Mission Directorate in Washington funds the LADEE mission.

The LLCD system, flight terminal and primary ground terminal at NASA’s White Sands Test Facility in Las Cruces, N.M., were developed by the Lincoln Laboratory at MIT. The Table Mountain Optical Communications Technology Laboratory operated by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., is participating in the demonstration. A third ground station operated by the European Space Agency on Tenerife in the Canary Islands also will be participating in the demonstration.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 
 

NASA’s Hubble extends stellar tape measure 10 times farther into space

Using NASA’s Hubble Space Telescope, astronomers now can precisely measure the distance of stars up to 10,000 light-years away – 10 times farther than previously possible. Astronomers have developed yet another novel way to use the 24-year-old space telescope by employing a technique called spatial scanning, which dramatically improves Hubble’s accuracy for making angular meas...
 
 
LM-AEHF

Fourth AEHF protected communications satellite begins integration months ahead of schedule

The fourth Advanced Extremely High Frequency satellite produced by Lockheed Martin is taking shape after early deliveries of its payload and propulsion core. AEHF-4, expected to launch in 2017, will enable the constellation to ...
 

 
nasa-telescope

NASA looks to go beyond batteries for space exploration

NASA is seeking proposals for the development of new, more capable, energy storage technologies to replace the battery technology that has long powered America’s space program. The core technologies solicited in the Wedne...
 
 

Near Infrared Camera Integrated into space telescope

Lockheed Martin and the University of Arizona have delivered the primary imaging instrument of the James Webb Space Telescope to NASA’s Goddard Space Flight Center. The new Near Infrared Camera, or NIRCam, has been successfully integrated within the heart of the telescope, known as the Integrated Science Instrument Module. The integration completes the suite of...
 
 

NASA awards robotics, vehicle, graphics simulation services contract

NASA has selected MacLean Engineering & Applied Technologies of Houston to provide simulation model development for organizations at the agency’s Johnson Space Center, also in Houston. This indefinite-delivery, indefinite-quantity contract has firm-fixed price and cost-plus fixed-fee task orders. Beginning July 1, the contract has a three-year base period followed by two one-year opt...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>