Space

November 6, 2013

NASA, International researchers obtain crucial data from meteoroid impact

A team of NASA and international scientists for the first time have gathered a detailed understanding of the effects on Earth from a small asteroid impact.

The unprecedented data obtained as the result of the airburst of a meteoroid over the Russian city of Chelyabinsk on Feb. 15, has revolutionized scientists’ understanding of this natural phenomenon.

The Chelyabinsk incident was well observed by citizen cameras and other assets. This factor provided a unique opportunity for researchers to calibrate the event, with implications for the study of near-Earth objects and the development of hazard mitigation strategies for planetary defense. Scientists from nine countries now have established a new benchmark for future asteroid impact modeling.

“Our goal was to understand all circumstances that resulted in the shock wave,” said meteor expert Peter Jenniskens, co-lead author of a report published in the journal Science.

Jenniskens, a meteor astronomer at NASA’s Ames Research Center and the SETI Institute, participated in a field study led by Olga Popova of the Institute for Dynamics of Geospheres of the Russian Academy of Sciences in Moscow in the weeks following the event.

“It was important that we followed up with the many citizens who had firsthand accounts of the event and recorded incredible video while the experience was still fresh in their minds,” said Popova.

By calibrating the video images from the position of the stars in the night sky, Jenniskens and Popova calculated the impact speed of the meteor at 42,500 mph. As the meteor penetrated through the atmosphere, it fragmented into pieces, peaking at 19 miles above the surface. At that point the superheated meteor appeared brighter than the sun, even for people 62 miles away.

Because of the extreme heat, many pieces of the meteor vaporized before reaching Earth. Scientists believe that between 9,000 to 13,000 pounds of meteorites fell to the ground. This amount included one fragment weighing approximately 1,400 pounds. This fragment wasrecovered from Lake Chebarkul on Oct. 16 by professional divers guided by Ural Federal University researchers in Yekaterinburg, Russia.

NASA researchers participating in the 59 member consortium study suspect the abundance of shock fractures in the rock contributed its breakup in the upper atmosphere. Meteorites made available by Chelyabinsk State University researchers were analyzed to learn about the origin of the shock veins and their physical properties. Shock veins are caused by asteroid collisions. When asteroid collide with each other, heat generated by the impact causes iron and nickel components of the objects to melt. These melts cool into thin masses, forming metal veins – shock veins – in the objects.

“One of these meteorites broke along one of these shock veins when we pressed on it during our analysis,” said Derek Sears, a meteoriticist at Ames.

Mike Zolensky, a cosmochemist at NASA’s Johnson Space Center in Houston, may have found why these shock veins (or shock fractures), were so frail. They contained layers of small iron grains just inside the vein, which had precipitated out of the glassy material when it cooled.

“There are cases where impact melt increases a meteorite’s mechanical strength, but Chelyabinsk was weakened by it,” said Zolensky.

The impact that created the shock veins may have occurred as long ago as 4.4 billion years. This would have been 115 million years after the formation of the solar system, according to the research team, who found the meteorites had experienced a significant impact event at that time.

“Events that long ago affected how the Chelyabinsk meteoroid broke up in the atmosphere, influencing the damaging shockwave,” said Jenniskens.

NASA’s Near-Earth Object Program sponsors research to better understand the origin and nature of NEOs. These essential studies are needed to inform our approach to preparing for the potential discovery and deflection of an object on a collision course with the Earth.

NASA’s recently announced asteroid initiative includes the first mission to capture and relocate an asteroid, as well as a grand challenge to find and characterize all asteroid threats to human population. It represents an unprecedented technological feat that will lead to new scientific discoveries and technological capabilities that will help protect our home planet.

Aside from representing a potential threat, the study of asteroids and comets represent a valuable opportunity to learn more about the origins of our solar system, the source of water on the Earth, and even the origin of organic molecules that lead to the development of life.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 1, 2015

News: Marine F-35 jets deemed ready for combat – A small batch of the highly anticipated – and much criticized – F-35B Joint Strike Fighter jets have been approved for combat by the U.S. Marine Corps.   News: Reports: China to sell J-10 fighter to Iran, Syria? – Iran is rumored external link to be buying 150...
 
 

News Briefs August 3, 2015

Russian military helicopter crashes during air show, one dead A Russian military helicopter crashed Aug. 2 during an aerobatic display, killing one of its crewmembers and injuring another, the Defense Ministry said. The Mi-28 helicopter gunship was part of a flight of helicopters performing aerobatics at the Dubrovichi firing range in Ryazan region, about 170...
 
 
Army photograph by John Andrew Hamilton

Improved Multiple Launch Rocket System tested at White Sands Missile Range

Army photograph by John Andrew Hamilton A Multiple Launch Rocket System with an improved armored cab fires a training rocket during a test. The rockets were simple training rockets and not equipped with a warhead, but still gen...
 

 

Missile Defense Agency, Raytheon demonstrate SM-6’s new anti-ballistic missile defense capability

In a first-of-its-kind test, the U.S. Navy fired a Raytheon Standard Missile-6, intercepting and destroying a short-range ballistic missile target at sea. The successful U.S. Missile Defense Agency test proved a modified SM-6 can eliminate threat ballistic missiles in their final seconds of flight. “SM-6 is the only missile in the world that can do...
 
 

Northrop Grumman-developed stealthy data link validated as combat ready with U.S. Marine Corps

the U.S. Marine Corps achieving F-35B initial operating capability, the Multifunction Advanced Data Link waveform developed by Northrop Grumman has been proven a key combat-ready capability of the F-35 Lightning II program. MADL is a high-data-rate, directional communications link that allows fifth-generation aircraft to communicate and coordinate tactics covertly. During testing of the Lockhee...
 
 

Lockheed Martin technology helps pilots, UAS operators share data, stay safe

As Unmanned Aircraft Systems take to the skies, it is essential for safety that UAS operators and pilots are aware of each other. To help provide this shared situational awareness, Lockheed Martin has deployed the first components of a UAS traffic management system that is available to the UAS community now. Lockheed Martin’s online Flight...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>