Uncategorized

November 13, 2013

Study finds climate link to ‘atmospheric river’ storms

A new NASA-led study of “atmospheric river” storms from the Pacific Ocean may help scientists better predict major winter snowfalls that hit West Coast mountains and lead to heavy spring runoff and sometimes flooding.

Atmospheric rivers — short-lived wind tunnels that carry water vapor from tropical oceans to mid-latitude land areas – are prolific producers of rain and snow on California’s Sierra Nevada mountains.

The finding, published in the journal Water Resources Research, has major implications for water management in the West, where Sierra runoff is used for drinking water, agriculture and hydropower.

The research team studied how two of the most common atmospheric circulation patterns in the Northern Hemisphere interact with atmospheric rivers. They found when those patterns line up in a certain way, they create a virtual freeway that leads the moisture-laden winds straight to the Sierras.

Bin Guan of the Joint Institute for Regional Earth System Science and Engineering, a collaboration between NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the University of California Los Angeles, led a team of scientists from NASA, UCLA , and the National Oceanic and Atmospheric Administration on this research.

An atmospheric river is a narrow stream of wind, about a mile high and sometimes of hurricane strength. Crossing the warm tropical Pacific in a few days, it becomes laden with water vapor. A moderate-sized atmospheric river carries as much water as the Mississippi River dumps into the Gulf of Mexico in an average week. When the river comes ashore and stalls over higher terrain, the water falls as snow or rain.

“Atmospheric rivers are the bridge between climate and West Coast snow,” said Guan. “If scientists can predict these atmospheric patterns with reasonable lead times, we’ll have a better understanding of water availability and flooding in the region.” The benefit of improving flood prediction alone would be significant. A single California atmospheric-river storm in 1999 caused 15 deaths and $570 million in damage.

Guan’s team used data from the JPL-developed Atmospheric Infrared Sounder (AIRS) instrument on NASA’s Aqua satellite, along with NOAA satellite data and snowpack data from the California Department of Water Resources. They looked at the extremely snowy winter of 2010-2011, when 20 atmospheric rivers made landfall.

The team compared the dates of these events with the phases of the Arctic Oscillation and the Pacific/North American teleconnection. These large-scale weather patterns wax and wane, stretching thousands of miles across the atmosphere and shaping the climate of the mid-latitudes, somewhat as the better-known El NiÒo and La NiÒa patterns do in the tropical Pacific.

Each pattern affects a different part of the Northern Hemisphere by seesawing between phases of lower-than-average and higher-than-average air pressure over various parts of the globe. For example, the negative phase of the AO is associated with higher pressure in the Arctic and lower pressure in the surrounding lower latitudes. In the positive phase, those highs and lows are reversed.

The phases of each pattern change irregularly and at varying intervals. The researchers charted these phases throughout the winter of 2010-2011. During 15 of the winter’s 20 atmospheric river occurrences, both patterns were in the negative phase. The team then looked at the period 1998-2011 and found a similar correspondence: more atmospheric rivers occurred when both patterns were negative.

According to Guan, in the double-negative periods the high- and low-pressure systems associated with that phase in each pattern mesh to create a lingering atmospheric low-pressure system just northwest of California. That low directs the atmospheric river fire hose straight toward the Sierra Nevadas.
Guan points out that the double-negative phase correlation is rare.

“I looked at 50 years of atmospheric data. Only five months had those phases of the PNA and AO occurring together for more than 15 days of the month,” he said.

AIRS was built and is managed by JPL for NASA’s Science Mission Directorate in Washington. Aqua is managed by NASA’s Goddard Space Flight Center, Greenbelt, Md. JPL is a division of the California Institute of Technology in Pasadena.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 1, 2014

Veterans: Substantial VA staff will face discipline - A substantial number of VA employees will face punishment for the veterans treatment scandal, the new national commander of the American Legion predicted Sept. 30, indicating that the slow pace of discipline has more to do with the hoops the department must jump through than it does a...
 
 

News Briefs October 1, 2014

Egypt president gives army control of arms imports The Egyptian president has amended a law, giving the country’s army control over weapons and ammunition imports. The Sept. 30 statement from the presidency says Abdel-Fattah el-Sissi changed articles stipulating that a permit for weapons’ imports has to be granted by the Interior Ministry, which is in...
 
 
atk-test

ATK successfully tests Orion launch abort motor igniter

NASA and ATK successfully completed a static test of the launch abort motor igniter for the Orion crew capsule’s Launch Abort System. Conducted at ATK’s facility in Promontory, Utah, this test is the next step towa...
 

 
uav-coalition

Small UAV coalition launched to advance commercial use of unmanned aerial vehicles

Leading technology companies Oct. 1 formally announced the formation of the Small UAV Coalition to help pave the way for commercial, philanthropic, and civil use of small unmanned aerial vehicles in the United States and abroad...
 
 
Navy photograph

NAWCWD manned for unmanned systems

Navy photograph A rail launch is performed during Integrator unmanned aerial vehicle testing at Naval Air Warfare Center Weapons Division China Lake, Calif. Naval Air Warfare Center Weapons Division scientists, engineers, techn...
 
 
NASA photograph by Ken Ulbrich

NASA employees go ‘above and beyond’

Courtesy photograph NASA Chief Scientist Albion Bowers, Christopher Miller and Nelson Brown receive the Exception Engineering Achievement Medal at Armstrong Research Center, Edwards Air Force Base, Calif. The prestigious award ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>