Business

November 20, 2013

ATK’s autonomous flight safety assembly makes first flight

ATK propulsion, composite and spacecraft technologies supported the Nov. 19 successful launch of an Orbital Sciences Minotaur I vehicle from Wallops Island, Va.

The Air Force’s Operationally Responsive Space-3 mission marked the 11th launch of a Minotaur I vehicle. ORS-3 is the first of three flights planned to certify the integrated flight safety assembly for the Autonomous Flight Safety System.

Breaking away from the traditional approach to launch vehicle flight safety, AFSS uses onboard sensors to provide autonomous decision-making with regards to vehicle errant behavior. The use of AFSS is expected to save money by reducing ground-based flight safety infrastructure and to enhance operational response with quicker turnaround for follow-on launches.

“The ORS-3 flight marks an important milestone towards the development and implementation of AFSS as the range safety system of the future,” said Cary Ralston, vice president and general manager of ATK Missile Products division. “Safety is at the core of what ATK provides, and we are excited to work with the government and deliver this innovative technology to the space industry.”

The ORS-3 Mission, also known as the Enabler Mission, will demonstrate launch and range improvements to include: automated vehicle trajectory targeting, range safety planning, and flight termination; employ a commercial-like procurement with FAA certification of a Minotaur 1; and launch the Air Force’s Space Test Program Satellite-3 and 28 CubeSats on an Integrated Payload Stack. These enablers not only focus on the ability to execute a rapid call up mission, they reduce engineering hours from months to days resulting in decreased mission costs.

The integrated AFSS assembly was developed at ATK facilities in Ronkonkoma, N.Y.; Plymouth, Minn.; and Promontory, Utah, and is expected to significantly reduce the cost and complexity of launch operations. NASA and the U.S. Air Force provided the Mission Rules Algorithm for the AFSS software.

The AFSS program was initiated in 2009 with funding from Office of the Secretary of Defense Test Resources Management Center under the High Speed Systems Test thrust area. AFSS is currently being funded by the ORS office.

In addition to AFSS, ATK provided a host of products to support this launch:

  • The Orion 50XL and Orion 38 motors that served as Minotaur’s third and fourth stages, respectively, were manufactured at ATK’s Salt Lake City facility. This event marks the 80th mission supported with Orion motors. In addition to being used on Orbital Minotaur space launch vehicles for the U.S. Air Force’s Orbital/Suborbital program, Orion motors are also used on Orbital’s highly successful Taurus XLÆ, Pegasus XLÆ and a variety of vehicles for Missile Defense Agency.
  • ATK’s Clearfield, Utah, facility produced the Orion 50-inch and 38-inch diameter composite cases and raceways for the third and fourth stage motors and the composite interstage that joins the two. ATK’s Flexseal assemblies enable the rocket motor nozzles to change the angle of thrust for steering control.
  • ATK provided three Planar Unfolding Modular Array (PUMA) solar array wings and supporting products for STPSat-3, the primary satellite aboard the Minotaur launch vehicle. Built by Ball Aerospace & Technologies Corp., STPSat-3 is the second flight of the Space Test Program-Standard Interface Vehicle, a common spacecraft bus for small technology demonstration and military research missions. ATK’s PUMA arrays, which are manufactured in Goleta, Calif., demonstrate low non-recurring engineering cost, low risk, ease of satellite implementation, and 100-percent flight success performance on more than 50 solar array wings on-orbit.



All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>