Business

November 20, 2013

ATK’s autonomous flight safety assembly makes first flight

ATK propulsion, composite and spacecraft technologies supported the Nov. 19 successful launch of an Orbital Sciences Minotaur I vehicle from Wallops Island, Va.

The Air Force’s Operationally Responsive Space-3 mission marked the 11th launch of a Minotaur I vehicle. ORS-3 is the first of three flights planned to certify the integrated flight safety assembly for the Autonomous Flight Safety System.

Breaking away from the traditional approach to launch vehicle flight safety, AFSS uses onboard sensors to provide autonomous decision-making with regards to vehicle errant behavior. The use of AFSS is expected to save money by reducing ground-based flight safety infrastructure and to enhance operational response with quicker turnaround for follow-on launches.

“The ORS-3 flight marks an important milestone towards the development and implementation of AFSS as the range safety system of the future,” said Cary Ralston, vice president and general manager of ATK Missile Products division. “Safety is at the core of what ATK provides, and we are excited to work with the government and deliver this innovative technology to the space industry.”

The ORS-3 Mission, also known as the Enabler Mission, will demonstrate launch and range improvements to include: automated vehicle trajectory targeting, range safety planning, and flight termination; employ a commercial-like procurement with FAA certification of a Minotaur 1; and launch the Air Force’s Space Test Program Satellite-3 and 28 CubeSats on an Integrated Payload Stack. These enablers not only focus on the ability to execute a rapid call up mission, they reduce engineering hours from months to days resulting in decreased mission costs.

The integrated AFSS assembly was developed at ATK facilities in Ronkonkoma, N.Y.; Plymouth, Minn.; and Promontory, Utah, and is expected to significantly reduce the cost and complexity of launch operations. NASA and the U.S. Air Force provided the Mission Rules Algorithm for the AFSS software.

The AFSS program was initiated in 2009 with funding from Office of the Secretary of Defense Test Resources Management Center under the High Speed Systems Test thrust area. AFSS is currently being funded by the ORS office.

In addition to AFSS, ATK provided a host of products to support this launch:

  • The Orion 50XL and Orion 38 motors that served as Minotaur’s third and fourth stages, respectively, were manufactured at ATK’s Salt Lake City facility. This event marks the 80th mission supported with Orion motors. In addition to being used on Orbital Minotaur space launch vehicles for the U.S. Air Force’s Orbital/Suborbital program, Orion motors are also used on Orbital’s highly successful Taurus XLÆ, Pegasus XLÆ and a variety of vehicles for Missile Defense Agency.
  • ATK’s Clearfield, Utah, facility produced the Orion 50-inch and 38-inch diameter composite cases and raceways for the third and fourth stage motors and the composite interstage that joins the two. ATK’s Flexseal assemblies enable the rocket motor nozzles to change the angle of thrust for steering control.
  • ATK provided three Planar Unfolding Modular Array (PUMA) solar array wings and supporting products for STPSat-3, the primary satellite aboard the Minotaur launch vehicle. Built by Ball Aerospace & Technologies Corp., STPSat-3 is the second flight of the Space Test Program-Standard Interface Vehicle, a common spacecraft bus for small technology demonstration and military research missions. ATK’s PUMA arrays, which are manufactured in Goleta, Calif., demonstrate low non-recurring engineering cost, low risk, ease of satellite implementation, and 100-percent flight success performance on more than 50 solar array wings on-orbit.



All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 23, 2015

News: Yemen chaos threatens U.S. counterterror efforts, including drone program - The White House’s strategy for fighting al-Qaeda in Yemen – repeatedly presented as a model by President Obama – was left in tatters Thursday by the resignation of the man who personally approved U.S. drone strikes in the country and the collapse of its central...
 
 

News Briefs January 23, 2015

NATO detects key Russian military equipment in east Ukraine NATO’s top commander in Europe says the alliance has detected the presence of key Russian military equipment in eastern Ukraine that, in the past, has accompanied large inflows of Russian troops. Gen. Philip Breedlove told a news conference Jan. 22 in Brussels that Russian electronic warfare...
 
 
Boeing photograph

Boeing Maritime Surveillance Aircraft ready for demonstration flights

Boeing photograph The Boeing Maritime Surveillance Aircraft program is ready for customer demonstration flights, having completed the baseline ground and flight testing of the aircraft mission systems. The Boeing Maritime Surve...
 

 
Air Force photograph by Jacqueline Cowan

F135 test demonstrates success of AEDC workshare initiative

Air Force photograph by Jacqueline Cowan Aerospace Testing Alliance Test Engineer Darren Carroll, pictured in front, assists as Pratt & Whitney Test Engineer Ronnie Thomas does a borescope inspection of the fan on the F135 ...
 
 
U.S. Air Force photo by Master Sgt. Kevin J. Gruenwald

40 years of Red Flag at Nellis

U.S. Air Force photo by Master Sgt. Kevin J. Gruenwald A flight of F-15 Eagles and F-16 Fighting Falcons Aggressors fly in formation over the Nevada Test and Training Ranges June 5, 2008. The proposal for Red Flag came in early...
 
 
Lockheed Martin photograph

Navy gears up to order production of 29 aircraft diagnostic systems

Lockheed Martin photograph Petty Officers Third Class Ira Schwartz assigned to Fleet Readiness Center Southeast at Naval Air Station Jacksonville, Fla., left, and Devin Riley from Fleet Readiness Center Mid-Atlantic at Naval Ai...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>