Space

November 20, 2013

NASA’s Chandra helps confirm evidence of jet in Milky Way’s black hole

Astronomers have long sought strong evidence that Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is producing a jet of high-energy particles. Finally they have found it, in new results from NASA’s Chandra X-ray Observatory and the National Science Foundation’s Very Large Array radio telescope.

Previous studies, using a variety of telescopes, suggested there was a jet, but these reports – including the orientation of the suspected jets – often contradicted each other and were not considered definitive.

“For decades astronomers have looked for a jet associated with the Milky Way’s black hole. Our new observations make the strongest case yet for such a jet,” said Zhiyuan Li of Nanjing University in China, lead author of a study appearing in an upcoming edition of The Astrophysical Journal and available online now.

Jets of high-energy particles are found throughout the universe, on large and small scales. They are produced by young stars and by black holes a thousand times larger than the Milky Way’s black hole. They play important roles in transporting energy away from the central object and, on a galactic scale, in regulating the rate of formation of new stars.

“We were very eager to find a jet from Sgr A* because it tells us the direction of the black hole’s spin axis. This gives us important clues about the growth history of the black hole,” said Mark Morris of the University of California at Los Angeles, a co-author of the study.

The study shows the spin axis of Sgr A* is pointing in one direction, parallel to the rotation axis of the Milky Way, which indicates to astronomers that gas and dust have migrated steadily into Sgr A* over the past 10 billion years. If the Milky Way had collided with large galaxies in the recent past and their central black holes had merged with Sgr A*, the jet could point in any direction.

The jet appears to be running into gas near Sgr A*, producing X-rays detected by Chandra and radio emission observed by the VLA. The two key pieces of evidence for the jet are a straight line of X-ray emitting gas that points toward Sgr A* and a shock front — similar to a sonic boom — seen in radio data, where the jet appears to be striking the gas. Additionally, the energy signature, or spectrum, in X-rays of Sgr A* resembles that of jets coming from supermassive black holes in other galaxies.

Scientists think jets are produced when some material falling toward the black hole is redirected outward. Since Sgr A* is presently known to be consuming very little material, it is not surprising the jet appears weak. A jet in the opposite direction is not seen, possibly because of gas or dust blocking the line of sight from Earth or a lack of material to fuel the jet.

The region around Sgr A* is faint, which means the black hole has been quiet in the past few hundred years. However, a separate Chandra study announced last month shows that it was at least a million times brighter before then.

“We know this giant black hole has been much more active at consuming material in the past. When it stirs again, the jet may brighten dramatically,” said co-author Frederick K. Baganoff of the Massachusetts Institute of Technology in Cambridge, Mass.

Astronomers have suggested the giant bubbles of high-energy particles extending out from the Milky Way and detected by NASA’s Fermi Gamma Ray Telescope in 2008 are caused by jets from Sgr A* that are aligned with the rotation axis of the galaxy. The latest results from Chandra support this explanation.

The supermassive black hole at the center of the Milky Way is about four million times more massive than our Sun and lies about 26,000 light-years from Earth. The Chandra observations in this study were taken between September 1999 and March 2011, with a total exposure of about 17 days.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra Program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

To read the paper describing these results, visit http://xxx.lanl.gov/abs/1310.0146.




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA Ames/JPL-Caltech/T Pyle

NASA’s Kepler reborn, makes first exoplanet find of new mission

Image courtesy of NASA Ames/JPL-Caltech/T Pyle The artistic concept shows NASA’s planet-hunting Kepler spacecraft operating in a new mission profile called K2. Using publicly available data, astronomers have confirmed K2&...
 
 
NASA illustration

NASA, planetary scientists find meteoritic evidence of Mars water reservoir

This illustration depicts Martian water reservoirs. Recent research provides evidence for the existence of a third reservoir that is intermediate in isotopic composition between the Red Planetís mantle and its current atmosphe...
 
 
Lockheed Martin photograph

Lockheed Martin-built MUOS-3 satellite encapsulated in launch vehicle fairing

Lockheed Martin photograph The U.S. Navy’s Mobile User Objective System-3 satellite (above) is encapsulated in its payload fairings for a scheduled Jan. 20, 2015 launch aboard a United Launch Alliance Atlas V rocket. MUOS ope...
 

 
NASA photograph

NASA’s Orion arrives back at Kennedy

NASA photograph NASA’s Orion spacecraft returned to the agency’s Kennedy Space Center in Florida Dec. 18, 2014. The spacecraft flew to an altitude of 3,600 miles in space during a Dec. 5 flight test designed to stre...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>