Business

November 22, 2013

Lockheed Martin GPS III satellite successfully communicates with GPS constellation

Lockheed Martin’s GPS III Non-Flight Satellite Testbed, a full-sized, functional GPS III satellite prototype, now at Cape Canaveral Air Force Station, Fla., recently communicated via cross-links with Air Force flight-like hardware simulators for the GPS IIR, GPS IIR-M, and GPS IIF satellites, which make up the bulk of the current GPS satellite constellation. Since July 19, the GNST has been at CCAFS, where it has helped test CCAFS’s facilities and pre-launch processes, established remote connectivity and communicated with the GPS Next Generation Operational Control System, and performed other exercises to further reducing risk and gaining efficiencies, prior the first GPS III flight satellite’s expected delivery to the U.S. Air Force in 2014 and launch in 2015.

The Lockheed Martin [NYSE: LMT] prototype of the next-generation Global Positioning System satellite, the GPS III, recently proved it was backward-compatible with the existing GPS satellite constellation in orbit.

During tests that concluded on Oct. 17, Lockheed Martin’s GPS III Nonflight Satellite Testbed, a full-sized, functional satellite prototype currently residing at Cape Canaveral Air Force Station, successfully communicated via cross-links with Air Force flight-like hardware simulators for the GPS IIR, GPS IIR-M, and GPS IIF satellites, which make up the bulk of the current GPS satellite constellation. Testing also demonstrated the ability of an Air Force receiver to track navigation signals transmitted by the GNST.

“These tests represent the first time when the GNST’s flight-like hardware has communicated with flight-like hardware from the rest of the GPS constellation and with a navigation receiver,” explained Paul Miller, Lockheed Martin’s director for GPS III Development. “This provides early confidence in the GPS III’s design to bring advanced capabilities to our nation, while also being backward-compatible.”

Lockheed Martin is currently under contract to produce the first four GPS III satellites (SV 01-04), and has received advanced procurement funding for long-lead components for the fifth, sixth, seventh, and eighth satellites (SV 05-08). The first flight-ready GPS III satellite is expected to arrive at Cape Canaveral in 2014, for launch by the Air Force in 2015.

GPS III, a critically important program for the Air Force, will affordably replace aging GPS satellites in orbit while improving capability to meet the evolving demands of military, commercial and civilian users. GPS III satellites will deliver three times better accuracy; provide up to eight times more powerful anti-jamming capabilities; and include enhancements to extend spacecraft life 25 percent further than the prior GPS block. It will be the first GPS satellite with a new L1C civil signal designed to make it interoperable with other international global navigation satellite systems.

An innovative investment by the Air Force under the original GPS III development contract, the GNST has helped to identify and resolve development issues prior to integration and test of the first GPS III flight space vehicle (SV 01). Following the Air Force’s rigorous “Back-to-Basics” acquisition approach, the GNST has gone through the development, test, and production process for the GPS III program first, significantly reducing risk for the flight vehicles, improving production predictability, increasing mission assurance, and lowering overall program costs.

The GNST arrived at the Cape on July 19 to test facilities and pre-launch processes in advance of the arrival of the first flight satellite.  On Aug. 30, the GNST successfully established remote connectivity and communicated with the GPS Next Generation Operational Control System, being developed by Raytheon.

Prior to shipment to the Cape, the GNST completed a series of high-fidelity activities to pathfind the integration, test and environmental checkout that all production GPS III satellites undergo at Lockheed Martin’s GPS III Processing Facility (GPF) in Denver, Colo.

The GPS III team is led by the Global Positioning Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the GPS III prime contractor, with teammates including ITT Exelis, General Dynamics, Infinity Systems Engineering, Honeywell, ATK, and other subcontractors. Air Force Space Command’s 2nd Space Operations Squadron, based at Schriever Air Force Base, Colo., manages and operates the GPS constellation for both civil and military users.




All of this week's top headlines to your email every Friday.


 
 

 
Boeing photograph

Boeing Oklahoma City expansion grows facilities, business presence

Boeing photograph July 29, Boeing broke ground on a new laboratory facility in Oklahoma City. Mayor Mick Cornett, Commissioner Brian Maughan, President of Boeing Global Services and Support Leanne Caret, Oklahoma Governor Mary ...
 
 

Boeing unveils first RAAF Growler

Boeing and the U.S. Navy July 29 extended advanced airborne electronic attack capability to a key U.S. ally, presenting the Royal Australian Air Force with its first EA-18G Growler. Australia is the first country other than the U.S. to obtain this aircraft. The Growlers will complement our existing and future air combat capability, and we...
 
 

Northrop Grumman, Missile Defense Agency surpass software affordability target

The Missile Defense Agency and Northrop Grumman have achieved nearly $7 million savings through the Modeling and Operations Software Affordability Initiative during 2014, exceeding the $5 million savings targeted. In collaboration with the MDA, Northrop Grumman launched the initiative to decrease software development costs while increasing productivity and creating more enhanced users’ ex...
 

 
Virgin Galactic photograph

NTSB concludes SpaceShipTwo flight test accident investigation

Virgin Galactic photograph WhiteKnightTwo and the first SpaceShipTwo during a captive carry test flight over the Mojave Desert. MOJAVE, Calif.–The National Transportation Safety Board has concluded the investigation of th...
 
 

Lockheed Martin, StemRad studying first-responder radiation shield for potential deep-space application

StemRad, Ltd. and Lockheed Martin have initiated a joint research and development effort to determine if StemRad’s radiation shielding technology ñ originally designed for first-responders ñ could help to keep astronauts safe on deep-space exploration missions. This collaboration is part of Lockheed Martin’s ongoing effort to establish international partnerships for human explorat...
 
 

General Dynamics to continue modernizing submarine tactical weapons systems

General Dynamics has received a $20 million contract modification from the U.S. Navy to continue modernizing the AN/BYG-1 Weapons Control System Technology Insertion and Advanced Processing Build software for U. S. Navy and Royal Australian Navy submarines. The AN/BYG-1 software analyzes and tracks submarine and surface-ship contact information, providing tactical, situational awareness for sub...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>