Space

December 6, 2013

Heat shield for NASA’s Orion spacecraft arrives at Kennedy Space Center

NASA’s Orion spacecraft is just about ready to turn up the heat. The spacecraft’s heat shield arrived at the agency’s Kennedy Space Center in Florida Dec. 4 aboard the agency’s Super Guppy aircraft.

The heat shield, the largest of its kind ever built, was to be unloaded Dec. 5 and is scheduled for installation on the Orion crew module in March, in preparation for Orion’s first flight test in September 2014.

“The heat shield completion and delivery to Kennedy, where Orion is being prepared, is a major step toward Exploration Flight Test-1 next year,” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development in Washington. “Sending Orion into space for the first time is going to give us crucial data to improve our design decisions and develop Orion to send humans on future missions to an asteroid and Mars.”

The heat shield began its journey in January 2012 in Colorado, at Orion prime contractor Lockheed Martin’s Waterton Facility near Denver. That was the manufacturing site for a titanium skeleton and carbon fiber skin that give the heat shield its shape and provide structural support during landing. They were shipped in March to Textron Defense Systems near Boston, where they were used in construction of the heat shield itself.

Textron installed a fiberglass-phenolic honeycomb structure on the skin, filled each of the honeycomb’s 320,000 cells with the ablative material Avcoat, then X-rayed and sanded each cell to match Orion’s design specifications. The Avcoat-treated shell will shield Orion from the extreme heat it will experience as it returns to Earth. The ablative material will wear away as it heats up during Orion’s re-entry into the atmosphere, preventing heat from being transferred to the rest of the capsule.

“Many people across the country have poured a tremendous amount of hard work into building this heat shield,” said Orion Program Manager Mark Geyer. “Their efforts are a critical part of helping us understand what it takes to bring a human-rated spacecraft back safely from deep space.”

Before and during its manufacture, the heat shield material was subjected to arc-jet testing NASA’s Ames Research Center in California and NASA’s Johnson Space Center in Houston. Arc jets heat and expand gasses to very high temperatures and supersonic and hypersonic speeds, thus simulating the heating conditions that a returning spacecraft will experience.

The heat shield delivered to Kennedy will be used during Exploration Flight Test-1, a two-orbit flight that will take an uncrewed Orion capsule to an altitude of 3,600 miles. The returning capsule is expected to encounter temperatures of almost 4,000 degrees Fahrenheit as it travels through Earth’s atmosphere at up to 20,000 mph, faster than any spacecraft in the last 40 years.

Data gathered during the flight will influence decisions about design improvements on the heat shield and other Orion systems, authenticate existing computer models, and innovative new approaches to space systems and development. It also will reduce overall mission risks and costs for future Orion missions, which include exploring an asteroid and Mars.




All of this week's top headlines to your email every Friday.


 
 

 

News Briefs February 27, 2015

Ukraine will start pulling back heavy weapons in the east Ukraine’s military says it will start pulling back its heavy weapons from the front line with Russian-backed separatists as required under a cease-fire agreement. The Defense Ministry said in a statement Feb. 26 that it reserved the right to revise its withdrawal plans in the...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>