Space

December 6, 2013

Heat shield for NASA’s Orion spacecraft arrives at Kennedy Space Center

NASA’s Orion spacecraft is just about ready to turn up the heat. The spacecraft’s heat shield arrived at the agency’s Kennedy Space Center in Florida Dec. 4 aboard the agency’s Super Guppy aircraft.

The heat shield, the largest of its kind ever built, was to be unloaded Dec. 5 and is scheduled for installation on the Orion crew module in March, in preparation for Orion’s first flight test in September 2014.

“The heat shield completion and delivery to Kennedy, where Orion is being prepared, is a major step toward Exploration Flight Test-1 next year,” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development in Washington. “Sending Orion into space for the first time is going to give us crucial data to improve our design decisions and develop Orion to send humans on future missions to an asteroid and Mars.”

The heat shield began its journey in January 2012 in Colorado, at Orion prime contractor Lockheed Martin’s Waterton Facility near Denver. That was the manufacturing site for a titanium skeleton and carbon fiber skin that give the heat shield its shape and provide structural support during landing. They were shipped in March to Textron Defense Systems near Boston, where they were used in construction of the heat shield itself.

Textron installed a fiberglass-phenolic honeycomb structure on the skin, filled each of the honeycomb’s 320,000 cells with the ablative material Avcoat, then X-rayed and sanded each cell to match Orion’s design specifications. The Avcoat-treated shell will shield Orion from the extreme heat it will experience as it returns to Earth. The ablative material will wear away as it heats up during Orion’s re-entry into the atmosphere, preventing heat from being transferred to the rest of the capsule.

“Many people across the country have poured a tremendous amount of hard work into building this heat shield,” said Orion Program Manager Mark Geyer. “Their efforts are a critical part of helping us understand what it takes to bring a human-rated spacecraft back safely from deep space.”

Before and during its manufacture, the heat shield material was subjected to arc-jet testing NASA’s Ames Research Center in California and NASA’s Johnson Space Center in Houston. Arc jets heat and expand gasses to very high temperatures and supersonic and hypersonic speeds, thus simulating the heating conditions that a returning spacecraft will experience.

The heat shield delivered to Kennedy will be used during Exploration Flight Test-1, a two-orbit flight that will take an uncrewed Orion capsule to an altitude of 3,600 miles. The returning capsule is expected to encounter temperatures of almost 4,000 degrees Fahrenheit as it travels through Earth’s atmosphere at up to 20,000 mph, faster than any spacecraft in the last 40 years.

Data gathered during the flight will influence decisions about design improvements on the heat shield and other Orion systems, authenticate existing computer models, and innovative new approaches to space systems and development. It also will reduce overall mission risks and costs for future Orion missions, which include exploring an asteroid and Mars.




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>