Space

December 6, 2013

NASA’s latest space technology small satellite phones home

PhoneSat 2.4, NASA’s next generation smartphone cubesat has phoned home. The tiny spacecraft that uses an off-the-shelf smartphone for a brain has completed checkout and sent back data confirming all systems are “go” for the spry spacefarer.

PhoneSat 2.4, a cube approximately four inches square, weighs only about 2.2 pounds, and was developed at NASA’s Ames Research Center in Moffett Field, Calif. It is first of the PhoneSat family to use a two-way S-band radio, allowing engineers to command the satellite from Earth. It is confirming the viability of using smartphones and other commercially available electronics in satellites destined for low-Earth orbit.

“It’s great to hear from NASA’s most recent cubesat spacecraft,” said Michael Gazarik, NASA’s associate administrator for space technology in Washington. “NASA is committed to opening up the high frontier to a new generation of explorers who can take advantage of these sorts of small satellites to do science and technology development at a fraction of the cost of larger, more complex spacecraft.”

In April, NASA successfully demonstrated a one-week mission with PhoneSat 1.0. With an expected orbital lifetime of up to one year, PhoneSat 2.4 will measure how well commercially developed components perform in space over a long period of time. This innovative application of commercially developed technologies for use in space provides for low-cost, low-risk, highly repetitive missions to meet some unique NASA science and exploration needs.

The spacecraft was among 11 agency-sponsored cubesats deployed Nov. 19 by a NASA-built Nanosatellite Launch Adapter System aboard an Orbital Sciences Minotaur 1 rocket for the U.S. Air Force from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia.

PhoneSat 2.4 also will test a system to control the orientation of the cubesat in space. Like the earlier PhoneSat 1, PhoneSat 2.4 uses a Nexus S smartphone made by Samsung Electronics running Google’s Android operating system. Santa Clara University in California is providing the ground station for the mission.

The smartphone provides many of the functions the satellite needs to operate, such as computation, memory, ready-made interfaces for communications, navigation and power, all assembled in a rugged package before launch. Data from the satellite’s subsystems, including the smartphone, the power system and orientation control system are being downlinked over amateur radio at a frequency of 437.425MHz.

The next PhoneSat, version 2.5, is scheduled to launch in February, hitching a ride aboard a commercial SpaceX rocket. That spacecraft also is expected to perform in Earth orbit for several months and continue testing the two-way radio and orientation systems. The PhoneSat Project is managed by the Engineering Directorate at NASA’s Ames Research Center in Moffett Field, Calif.

The PhoneSat series of missions are pathfinders for NASA’s next Small Spacecraft Technology mission, the Edison Demonstration of Smallsat Networks (EDSN). The EDSN mission is composed of eight identical 1.5-unit cubesats, which are each approximately 4 inches by 4 inches by 6 inches in size and weighing about 5.5 pounds, that will be deployed during a launch from Kauai, Hawaii in 2014.

The EDSN mission will demonstrate the concept of using many small spacecraft in a coordinated cluster to study the space environment and space-to-space communications techniques. The eight EDSN satellites each will have a Nexus S smartphone for satellite command and data handling, with a scientific instrument added as a payload on each spacecraft.

During EDSN, each cubesat will make science measurements and transmit the data to the others while any one of them can then transmit all of the collected data to a ground station. This versatility in command and control could make possible large swarms of satellites to affordably monitor the Earth’s climate, space weather and other global-scale phenomena.

The PhoneSat Project is one of many development projects within NASA’s Small Spacecraft Technology Program, one of nine programs within NASA’s Space Technology Mission Directorate. The Small Spacecraft Technology Program develops and matures technologies to enhance and expand the capabilities of small spacecraft, with a particular focus on communications, propulsion, pointing, power, and autonomous operations.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 28, 2014

News: After F-15 jet crash in Virginia, rescue helicopters search for pilot - Helicopters are searching for an Air National Guard pilot after his F-15 jet crashed in the mountains of Virginia this morning, military officials said.   Business: U.S. Air Force 3DELRR contract expected soon - The U.S. Air Force could award the contract for its...
 
 

News Briefs August 28, 2014

Russian directing new offensive in Ukraine The Obama administration believes Russia is leading a new military counteroffensive in Ukraine. U.S. State Department spokeswoman Jen Psaki says Russia has sent additional columns of tanks and armored vehicles into its neighbor’s territory. She says the incursions suggest a ìRussian-directed counteroffensive is likely underway in the contested e...
 
 
LM-C5

Double Deuce

A U.S. Air Force crew ferried the 22nd C-5M Super Galaxy from the Lockheed Martin facilities in Marietta, Ga., Aug. 25. Aircraft 86-0011 was ferried by a crew led by Maj. Gen. Dwyer L. Dennis, Director, Global Reach Programs, O...
 

 
Northrop Grumman photograph

First ever RQ-4 Global Hawk hits 100th flight on NASA mission

Northrop Grumman photograph A historical look at the first Global Hawk (AV1) during its maiden flight over Edwards Air Force Base, Calif., on Feb. 28, 1998. AV1 has made history again with its 100th flight in support of NASA en...
 
 

Northrop Grumman’s CIRCM system completes U.S. Army flight testing

Northrop Grumman’s Common Infrared Countermeasures system recently completed another round of U.S. Army testing by demonstrating its capabilities on a UH-60M Black Hawk helicopter. The flight test was conducted at Redstone Arsenal in Huntsville, Ala., by the Redstone Test Center. The Northrop Grumman CIRCM system was subjected to rigorous conditions over a six-week period, after...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>