Business

December 9, 2013

Ball Aerospace demonstrates ultra-lightweight telescope technologies for DARPA’s MOIRE program

ball-darpa
Ball Aerospace & Technologies Corp. has demonstrated unprecedented telescope technologies using ultra-lightweight polymer membrane optics.

Ball is incrementally demonstrating technology needed to deploy a large, 20-meter-diameter, lightweight space-based telescope in geosynchronous orbit as part of the Membrane Optic Imager Real-time Exploitation program, led by the Defense Advanced Research Projects Agency.

Most recently, Ball completed construction and testing of one-eighth of a 5-meter-diameter annular segmented telescope to verify functionality of the MOIRE design.

“The ground demonstration substantiates that this innovative technology could work on next generation space telescopes to greatly reduce their costs and enable larger telescopes,” said Ball Aerospace President Rob Strain.† “This technology could apply to a wide-range of applications providing various forms of information to a multitude of users.”

The lightweight optics developed under the MOIRE program reduces the mass of large aperture telescopes by† nearly an order of magnitude compared to those with conventional optics.† Since costs scale roughly with spacecraft mass, one key to affordability is minimizing the mass of future space optics.

This technology could lend itself to easily stowed configurations for launch within a payload shroud that could be deployed on orbit.

The telescope concept that Ball developed employs thin (less than 1/1,000th of an inch) transparent membranes etched with a diffraction pattern as the primary optical element used to focus light.

“This is the first design to use transparent membranes on a large scale,” said Aaron Seltzer, director of Advanced Development for Ball Aerospace’s National Defense business unit. “The result is a telescope with exceptionally low mass per unit of collecting area.”

To produce MOIRE’s optical-quality polymer membranes and the precision etching needed to generate the diffraction pattern, Ball worked with NeXolve and the Lawrence Livermore National Laboratory. The Ball demonstration telescope uses six primary diffractive optical elements. Additional technologies demonstrated by Ball for the MOIRE telescope include the use of secondary diffractive optical elements to correct chromatic dispersion (e.g. the rainbow effect visible on the reverse side of a DVD); stability of the membranes; and the use of laser metrology and active optics to align the primary and secondary optics.

Following the successful ground-based proof of concept for MOIRE, the Ball team intends to pursue additional funding to move the technology forward.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 28, 2014

News: After F-15 jet crash in Virginia, rescue helicopters search for pilot - Helicopters are searching for an Air National Guard pilot after his F-15 jet crashed in the mountains of Virginia this morning, military officials said.   Business: U.S. Air Force 3DELRR contract expected soon - The U.S. Air Force could award the contract for its...
 
 

News Briefs August 28, 2014

Russian directing new offensive in Ukraine The Obama administration believes Russia is leading a new military counteroffensive in Ukraine. U.S. State Department spokeswoman Jen Psaki says Russia has sent additional columns of tanks and armored vehicles into its neighbor’s territory. She says the incursions suggest a ìRussian-directed counteroffensive is likely underway in the contested e...
 
 
LM-C5

Double Deuce

A U.S. Air Force crew ferried the 22nd C-5M Super Galaxy from the Lockheed Martin facilities in Marietta, Ga., Aug. 25. Aircraft 86-0011 was ferried by a crew led by Maj. Gen. Dwyer L. Dennis, Director, Global Reach Programs, O...
 

 
Northrop Grumman photograph

First ever RQ-4 Global Hawk hits 100th flight on NASA mission

Northrop Grumman photograph A historical look at the first Global Hawk (AV1) during its maiden flight over Edwards Air Force Base, Calif., on Feb. 28, 1998. AV1 has made history again with its 100th flight in support of NASA en...
 
 

Northrop Grumman’s CIRCM system completes U.S. Army flight testing

Northrop Grumman’s Common Infrared Countermeasures system recently completed another round of U.S. Army testing by demonstrating its capabilities on a UH-60M Black Hawk helicopter. The flight test was conducted at Redstone Arsenal in Huntsville, Ala., by the Redstone Test Center. The Northrop Grumman CIRCM system was subjected to rigorous conditions over a six-week period, after...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>