Business

December 9, 2013

Ball Aerospace demonstrates ultra-lightweight telescope technologies for DARPA’s MOIRE program

ball-darpa
Ball Aerospace & Technologies Corp. has demonstrated unprecedented telescope technologies using ultra-lightweight polymer membrane optics.

Ball is incrementally demonstrating technology needed to deploy a large, 20-meter-diameter, lightweight space-based telescope in geosynchronous orbit as part of the Membrane Optic Imager Real-time Exploitation program, led by the Defense Advanced Research Projects Agency.

Most recently, Ball completed construction and testing of one-eighth of a 5-meter-diameter annular segmented telescope to verify functionality of the MOIRE design.

“The ground demonstration substantiates that this innovative technology could work on next generation space telescopes to greatly reduce their costs and enable larger telescopes,” said Ball Aerospace President Rob Strain.† “This technology could apply to a wide-range of applications providing various forms of information to a multitude of users.”

The lightweight optics developed under the MOIRE program reduces the mass of large aperture telescopes by† nearly an order of magnitude compared to those with conventional optics.† Since costs scale roughly with spacecraft mass, one key to affordability is minimizing the mass of future space optics.

This technology could lend itself to easily stowed configurations for launch within a payload shroud that could be deployed on orbit.

The telescope concept that Ball developed employs thin (less than 1/1,000th of an inch) transparent membranes etched with a diffraction pattern as the primary optical element used to focus light.

“This is the first design to use transparent membranes on a large scale,” said Aaron Seltzer, director of Advanced Development for Ball Aerospace’s National Defense business unit. “The result is a telescope with exceptionally low mass per unit of collecting area.”

To produce MOIRE’s optical-quality polymer membranes and the precision etching needed to generate the diffraction pattern, Ball worked with NeXolve and the Lawrence Livermore National Laboratory. The Ball demonstration telescope uses six primary diffractive optical elements. Additional technologies demonstrated by Ball for the MOIRE telescope include the use of secondary diffractive optical elements to correct chromatic dispersion (e.g. the rainbow effect visible on the reverse side of a DVD); stability of the membranes; and the use of laser metrology and active optics to align the primary and secondary optics.

Following the successful ground-based proof of concept for MOIRE, the Ball team intends to pursue additional funding to move the technology forward.




All of this week's top headlines to your email every Friday.


 
 

 

F-16V completes major capability milestone

The newest configuration of the F-16 Fighting Falcon, the F-16V, has reached a major capability milestone with the integration of a new Active Electronically Scanned Array radar. Completing this milestone on schedule demonstrates our ability to meet program commitments, said Roderick McLean, vice president and general manager of the F-16/F-22 Integrated Fighter Group at Lockheed...
 
 
Lockheed Martin photograph

Robots moving robots: Lockheed Martin conducts first fully autonomous mission

Lockheed Martin photograph A K-MAX unmanned helicopter delivers an SMSS unmanned ground vehicle during a fully autonomous mission demonstration at Fort Benning, Ga. A safety pilot was on board K-MAX but did not operate the cont...
 
 

Lockheed Martin introduces maritime test bed

Using a newly developed advanced maritime test bed, Lockheed Martin recently demonstrated how continually evolving technologies such as data fusion and predictive analytics can be used to share intelligence quickly and securely – even in limited bandwidth naval settings. This new software test platform, designed to mimic different naval environments at sea and ashore, allowed...
 

 

Aerojet Rocketdyne awarded defense contract for large scale additive manufacturing

Aerojet Rocketdyne was recently awarded a contract by Wright-Patterson Air Force Base, Ohio, through the Defense Production Act Title III Office for large-scale additive manufacturing development and demonstration. The contract will secure multiple large selective laser melting machines to develop liquid rocket engine applications for national security space launch services. Aerojet Rocketdyne ...
 
 

U.S. Navy to test, evaluate Lockheed Martin industrial exoskeletons

Lockheed Martin has received a contract through the National Center for Manufacturing Sciences for the U.S. Navy to evaluate and test two FORTIS exoskeletons. This marks the first procurement of Lockheed Martin’s exoskeletons for industrial use. Terms of the contract were not disclosed. The FORTIS exoskeleton is an unpowered, lightweight exoskeleton that increases an operator’s...
 
 
Northrop Grumman photograph by Alan Radecki

Northrop Grumman, Navy integrate manned, unmanned flight ops

https://www.youtube.com/watch?v=RqiOzO8yV4A&feature=youtu.be Northrop Grumman photograph by Alan Radecki The U.S. Navy’s unmanned X-47B conducts flight operations aboard the aircraft carrier USS Theodore Roosevelt (C...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>