Space

December 9, 2013

Moon Express unveils breakthrough ‘MX-1’ commercial lunar lander

moon-express
Moon Express, Inc., a privately funded lunar resources company, unveiled its “MX-1″ lunar lander spacecraft Dec. 5 as a breakthrough robotic space vehicle capable of a multitude of applications including delivering scientific and commercial payloads to the Moon at a fraction of the cost of conventional approaches.

The spacecraft design is being unveiled today at the closing session of Autodesk University in Las Vegas in front of an audience of over 10,000 attendees.

The MX-1 synthesizes proprietary robotic technologies, advanced micro-avionics, and a unique toroidal structure to produce a “green” robotic spacecraft that is powered by sunlight and uses hydrogen peroxide as rocket fuel. Hydrogen peroxide (H2O2) is an oxygen enriched water compound commonly found in nature and biological systems. With the recent discovery of water on the Moon, the MX-1 has a potential source of rocket fuel on the lunar surface, a scenario that would be a game changer in the economics of lunar resources and solar system exploration.

“The spacecraft rockets use a high test version of the consumer level hydrogen peroxide widely available in drug stores,” said Tim Pickens, Chief Propulsion Engineer at Moon Express and former propulsion lead for SpaceShipOne. “We’re developing three new rocket engines at our Propulsion Development and Test Facilities in Huntsville and benefiting greatly from new advances in digital 3D design and fabrication tools.”

The main MX-1 rocket engine is a dual mode bi-propellant system that also uses kerosene as an after burner to give the spacecraft the punch to break out of Earth orbit, accelerate to faster than a bullet, travel a million miles to beyond the Moon, and come back to break to zero velocity using its outboard thrusters as it touches the lunar surface. The spacecraft is designed to ride to Earth orbit on low cost secondary payload opportunities aboard commercial launchers like the SpaceX Falcon 9 that are radically reducing the cost of access to space.

About the size of a large coffee table, the MX-1 is a completely self-contained single stage spacecraft that can reach the surface of the Moon from a geosynchronous transfer orbit (GTO) commonly used to place communications satellites above the Earth. It is also designed to be a flexible spacecraft platform that can support a number of applications including serving as a flexible, agile upper stage for existing launch systems enabling Earth orbit cubesat deployment, satellite servicing, and “space tug” applications such as cleaning up space debris.

“The MX-1 is not just a lunar lander, it is a spacecraft workhorse with many markets,” said Moon Express Co-founder & CEO Bob Richards. “The MX-1 is the ‘iPhone of space’; a platform capable of supporting many apps including our core plan of exploring the Moon for resources of benefit to humanity.”

Moon Express is introducing the MX-1 as the first of a series of robotic space vehicles based on a scalable patent pending design to operate in Earth orbit and deep space destinations. Moon Express will utilize the MX-1 in its maiden technology demonstrator flight in 2015, delivering a number of commercial and government payloads to the Moon and pursuing the $30M Google Lunar XPRIZE.

Moon Express engineers have combined the latest exponential technologies in micro-avionics with advanced propulsion and materials to create an innovative approach to spacecraft design and fabrication, empowered by leading edge Autodesk digital design tools to help make the impossible possible and reach for the Moon.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Lockheed Martin successfully mates NOAA GOES-R satellite modules

Lockheed Martin photograph Lockheed Martin successfully mated together the large system and propulsion modules of the first GOES-R series weather satellite at the companyís Space Systems facilities near Denver, Colo. A team of...
 
 
Image courtesy of NASA/GSFC

NASA Mars spacecraft ready for Sept. 21 orbit insertion

NASA’s Mars Atmosphere and Volatile Evolution spacecraft is nearing its scheduled Sept. 21 insertion into Martian orbit after completing a 10-month interplanetary journey of 442 million miles. Flight Controllers at Lockheed M...
 
 

Lockheed Martin-built CLIO satellite successfully launched

The U.S. government’s CLIO satellite, designed and built by Lockheed Martin, was successfully launched today from Cape Canaveral Air Force Station, Fla. Lift-off occurred at 6:10 p.m., MDT, aboard a United Launch Alliance Atlas V launch vehicle. Initial contact with the satellite was confirmed at 9:08 p.m., MDT. The CLIO system is based on innovative...
 

 

ULA launches 60th Mission from Cape Canaveral

A United Launch Alliance Atlas V rocket carrying the CLIO mission for Lockheed Martin Space Systems Company launched at 8:10†p.m., EDT, Sept. 16 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Fla. “It is an honor to work with Lockheed Martin Space Systems Company and all of our mission partners to launch this...
 
 
Image courtesy of NASA, ESA, STScI-RCC14-41a

Hubble helps find smallest known galaxy containing supermassive black hole

Image courtesy of NASA, ESA, STScI-RCC14-41a Artist’s View of M60-UCD1 Black Hole.   Astronomers using data from NASA’s Hubble Space Telescope and ground observation have found an unlikely object in an improbable p...
 
 
Image courtesy of NASA/CXC/M. Weiss

NASA’s Chandra X-ray Observatory finds planet that makes star act deceptively old

Image courtesy of NASA/CXC/M. Weiss A new study from NASA’s Chandra X-ray Observatory shows that a giant exoplanet, WASP-18b, is making the star that it orbits very closely act much older than it actually is. This artist&...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>