Space

December 11, 2013

NASA developing legs for space station’s Robonaut 2

NASA engineers are developing climbing legs for the International Space Station’s robotic crewmember Robonaut 2, marking another milestone in space humanoid robotics.

The legless R2, currently attached to a support post, is undergoing experimental trials with astronauts aboard the orbiting laboratory. Since its arrival at the station in February 2011, R2 has performed a series of tasks to demonstrate its functionality in microgravity.

These new legs, funded by NASA’s Human Exploration and Operations and Space Technology mission directorates, will provide R2 the mobility it needs to help with regular and repetitive tasks inside and outside the space station. The goal is to free up the crew for more critical work, including scientific research.

“NASA has explored with robots for more than a decade, from the stalwart rovers on Mars to R2 on the station,” said Michael Gazarik, NASA’s associate administrator for space technology in Washington.

“Our investment in robotic technology development is helping us to bolster productivity by applying robotics technology and devices to fortify and enhance individual human capabilities, performance and safety in space.”

Once the legs are attached to the R2 torso, the robot will have a fully extended leg span of 9 feet, giving it great flexibility for movement around the space station. Each leg has seven joints and a device on what would be the feet called an end effector, which allow the robot to take advantage of handrails and sockets inside and outside the station. A vision system for the end effectors also will be used to verify and eventually automate each limb’s approach and grasp.

NASA engineers have built the legs and R2 will be receiving them early next year. The new legs are designed for work both inside and outside the station, but upgrades to R2′s upper body will be necessary before it can begin work outside the space station.

Technologies developed for Robonaut have led to new robotic devices for future spaceflight that also have direct applications here on Earth. For example, NASA is developing a robotic exoskeleton that could help astronauts stay healthier in space and also aid people with physical disabilities.

R5, next in NASA’s Robonaut series of robots, will debut later this month when it competes in the Defense Advanced Research Project Agency’s (DARPA) Robotics Challenge. During the challenge, robots will demonstrate capabilities to execute complex tasks in dangerous, degraded, human-engineered environments. Competing teams are expected to focus on robots that can use standard tools and equipment commonly available in human environments, ranging from hand tools to vehicles, with an emphasis on adaptability to tools with diverse specifications.

The International Space Station serves as a test bed for future technologies that will be vital to human exploration as NASA explores asteroids and Mars. NASA’s Space Technology Program is innovating, developing, testing and flying hardware for use in NASA’s future missions.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>