Space

December 18, 2013

NASA engineers crush fuel tank to build better rockets

NASA engineers buckled an aluminum-lithium cylinder similar in size to fuel tanks for the largest rockets ever built.

https://www.youtube.com/watch?v=nUjpVBktTAI&feature=player_embedded

NASA completed a series of high-tech can-crushing tests last week as an enormous fuel tank crumbled under the pressure of almost a million pounds of force, all in the name of building lighter, more affordable rockets.

During the testing for the Shell Buckling Knockdown Factor Project, which began Dec. 9 at NASA’s Marshall Space Flight Center in Huntsville, Ala., force and pressure were increasingly applied to the top of an empty but pressurized rocket fuel tank to evaluate its structural integrity. The resulting data will help engineers design, build and test the gigantic fuel tanks for the Space Launch System rocket NASA is developing for deep space missions.

“These full-scale tests along with our computer models and subscale tests will help NASA and industry design lighter, more affordable launch vehicles,” said Mark Hilburger, senior research engineer in the Structural Mechanics and Concepts Branch at NASA’s Langley Research Center in Hampton, Va. Hilburger is conducting the tests for the NASA Engineering and Safety Center. “We were looking at real-time data from 20 cameras and more than 800 sensors during the final test.”

The aluminum-lithium tank was made from unused space shuttle tank hardware and decked out in 70,000 black and white polka dots that helped high-speed cameras focus on any buckles, rips or strains.

NASA engineers prepared a test article, similar in size to a rocket fuel tank, for a series of tests conducted inside the structural test area at the Marshall Center.

“When it buckled it was quite dramatic,” Hilburger said. “We heard the bang, almost like the sound of thunder and could see the large buckles in the test article.”

Engineers are updating design guidelines that have the potential to reduce launch vehicle weight by 20 percent. Lighter rockets can carry more equipment into space or travel farther away from Earth for exploration missions to asteroids, Mars or other distant locations.

“In addition to providing data for the Space Launch System design team, these tests are preparing us for upcoming full-scale tests,” said Matt Cash, Marshall’s lead test engineer for the shell buckling efforts and the SLS forward skirt and liquid oxygen tank structural testing. “Performing structural tests on hardware that is the same size as SLS hardware is providing tremendous benefit for our future development work for the rocket.”

The testing was conducted at Marshall’s load test annex, part of the Structural and Dynamics Engineering Test Laboratory previously used to test large structures for the Saturn V rocket, space shuttle and International Space Station.

NASA’s Space Launch System will provide an entirely new capability for human exploration beyond Earth orbit. Designed to be flexible for crew or cargo missions, the SLS will be safe, affordable and sustainable to continue America’s journey of discovery from the unique vantage point of space. SLS will carry the Orion spacecraft’s crew to deep space destinations including an asteroid and eventually Mars.




All of this week's top headlines to your email every Friday.


 
 

 
lm-orion3

Orion spacecraft transfers To launch abort system facility

https://www.youtube.com/watch?v=j68mszdhTmY NASA and Lockheed Martin have finished fueling the Orion spacecraft with ammonia, hydrazine and high pressure helium at Kennedy Space Center’s Payload Hazardous Servicing Facili...
 
 

NASA telescopes find clear skies, water vapor on exoplanet

Astronomers using data from three of NASA’s space telescopes – Hubble, Spitzer and Kepler – have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest planet from which molecules of any kind have been detected. “This discovery...
 
 
NASA photograph by Aubrey Gemignani

New crew launches to space station to continue scientific research

NASA photgoraph Three crew members are heading to the International Space Station after launching in a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan at 4:25 p.m., EDT, Sept. 25. Three crew members representing the...
 

 

NASA expands commercial space program, requests proposals for IS resupply

On the heels of awarding groundbreaking contracts to U.S. commercial space companies to ferry American astronauts to the International Space Station, NASA has released a request for proposals for the next round of contracts for private-sector companies to deliver experiments and supplies to the orbiting laboratory. Under the Commercial Resupply Services 2 RFP, NASA intends...
 
 

ATK offers solid solution to U.S. Air Force’s RD-180 replacement request

ATK has provided the U.S. Air Force an American-made commercial solid rocket solution as a replacement for the RD-180 Russian-made, first-stage engine of United Launch Alliance’s Atlas V launch vehicle. “ATK’s solid rocket propulsion solution provides a cost-effective, reliable solution based on advanced technology,” said Blake Larson, president of ATK’s Aerospace ...
 
 

SpaceX breaks ground on Texas rocket launch site

BROWNSVILLE, Texas – The commercial rocket launches that could begin as early as 2016 in the southernmost tip of Texas will be a critical step toward one day establishing a human presence on Mars, SpaceX founder and CEO Elon Musk said Sept 22. With waves from the Gulf of Mexico crashing just over the dunes...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>