Defense

January 6, 2014

Army team to destroy Syrian chemical weapons afloat

Two of these Field Deployable Hydrolysis Systems are now installed on the MV Cape Ray, a nearly 650-foot-long ship now in Portsmouth, Va. The Field Deployable Hydrolysis System is designed to neutralize chemical weapons. Each $5 million system can, depending on the material, process between five to 25 metric tons of material a day. With two systems, that means as much as 50 metric tons a day of chemical warfare agents can be destroyed. The mission requires disposal of 700 metric tons of material.

Some 64 specialists from the Army’s Edgewood Chemical Biological Center are expected to depart for the Mediterranean in about two weeks aboard the ship MV Cape Ray to destroy chemical weapons from Syria.

The nearly 650-foot-long ship, now in Portsmouth, will travel to a yet-to-be specified location in the Mediterranean and will take on about 700 metric tons of both mustard gas and “DF compound,” a component of the nerve agent sarin gas, and will then use two new, and recently installed “field deployable hydrolysis systems” to neutralize the chemicals.

Onboard the Cape Ray will be 35 mariners, about 64 chemical specialists from Edgewood, Md., a security team, and a contingent from U.S. European Command. It’s expected the operational portion of the mission will take about 90 days.

Outside the ship, Jan. 2, Frank Kendall, under secretary of Defense for acquisition, technology and logistics, said preparations began before the United States even knew it was committed to the mission — or that the mission would ever materialize.

“There was a recognition that something was going to happen in Syria, in all likelihood that would require us to do something with those chemical materials that were known to be there,” he said.

In December 2012, a request was made to determine what could be done if the U.S. was asked to participate in destruction of chemical weapons from Syria.

By the end of January 2013, a team with the Joint Project Manager for Elimination and the Army’s Edgewood Chemical Biological Center in Edgewood, Md., had evaluated existing technology and configurations for neutralization of chemical weapons and made the recommendation to use the hydrolysis process. Construction of a deployable system began in February, and the first prototype was available in June. A second was available in September.

“We could have waited to see what happened and then reacted to that, or we could have moved out ahead of time and then prepared for what might happen or was likely to happen,” Kendall said. “Fortunately … we took the latter course.”

Onboard the ship, an environmentally sealed tent contains two Field Deployable Hydrolysis System, or FDHS, units, which will operate 24 hours a day in parallel to complete the chemical warfare agent neutralization mission.

Each unit costs about $5 million and contains built-in redundancy and a titanium-lined reactor for mixing the chemical warfare agents with the chemicals that will neutralize them.

About 130 gallons of mustard gas can be neutralized at a time, over the course of about two hours, for instance, said Adam Baker, with the Edgewood Chemical Biological Center.

The FDHS systems can, depending on the material, process between 5 to 25 metric tons of material a day. With two systems, that means as much as 50 metric tons a day of chemical warfare agents can be destroyed. The mission requires disposal of 700 metric tons of material. But the plan is not to start out on the first day at full speed.

“There is a ramp-up period,” Baker said. “It’s going to be a slow start. We’re going to go very deliberately and safely.”

Rob Malone, with the Joint Project Manager for Elimination at Edgewood, said the two chemical warfare agents will be neutralized with reagents such as bleach, water or sodium hydroxide.

The MV Cape Ray, a nearly 650-foot-long ship now in Portsmouth, Va., is expected to depart the United States in about two weeks for the Mediterranean to take part in a mission to destroy chemical weapons from Syria.

“They are doing a chemical hydrolysis process. It brings the chemical agent together with a reagent, another chemical,” Malone said. “It creates a chemical reaction that basically destroys the chemical agent in and of itself.”

The result of that neutralization process will create about 1.5 million gallons of a toxic “effluent” that must be disposed of, but cannot be used as a chemical weapon. Additionally, Malone said, the effluent is similar to other toxic hazardous compounds that industrial processes generate. There is a commercial market worldwide for disposing of such waste.

The effluent will be acidic and will be PH-adjusted to bring it up to “above neutral,” as part of the process. The end result will be a liquid that is caustic, similar to commercially-available “Drano,” said Baker.

The operational plan includes a cycle of six days of disposal plus one day for maintenance of the equipment. On board will be about 220 6,600-gallon containers that will hold the reagents used in the disposal process, and will also be used afterward to hold the effluent.

“Everything will be kind of contained on the ship throughout the entire process,” Malone said.

 

Years of excellence

The U.S. has never disposed of chemical weapons aboard a ship before. But it has spent years disposing of its own chemical weapons on land, using the same process that the FDHS uses. The chemical process is not new, and neither is the technology. The format, field deployable, is new, however. And the platform, aboard a ship, is also new. And these additions to the process have created challenges for the team.

“This has not been done on this platform, not been done at sea,” said Baker. “But it is taking the established operations we’ve done at several land sites domestically and internationally and is applying them here.”

In the U.S., the military has been destroying its own chemical weapons for years at places like Aberdeen Proving Ground, Md., and the recently-closed Pine Bluff Arsenal, Ala. Lessons from those facilities and others were used to develop the process that will be used aboard the Cape Ray to destroy Syrian chemical weapons.

The process for disposing of mustard gas was used at Aberdeen Proving Ground. The process for disposing of DF compound was taken from Pine Bluff Arsenal, Baker said. The processes and technologies from those locations were scaled down to make them transportable.

“So there is no mystery about the process,” Kendall said. “It is a slightly different scale that we are doing it at here. We had fixed installations that had hydrolysis units that could do this job. But what we did not have was a ‘transportable, field deployable’ [system], the words we’re using for these systems, that could be moved somewhere else.”

Malone, who has 20 years of experience destroying chemical weapons for the United States, said doing aboard a ship what he has done on land for two decades required some additional thought and effort.

“We had to figure out on the Cape Ray how to operate in three dimensions,” he said.

The FHDS systems are inside tents inside the ship, for example. But the chemical weapons may be loaded on the ship on the deck above, and additional materials will be a deck below the FDHS equipment. On land, everything is spread out and on one level, he said.

“That’s been the significant challenge and things we’ve had to overcome to get the Cape Ray ready for deployment,” he said.

Additionally, vibration studies were done to learn how lab equipment would operate on board a ship, he said. And the equipment had to be modified to anchor it into the ship using chains.

 

Faster throughout

In the U.S. chemical weapons demilitarization program, many times it is munitions that contain chemical weapons that are being demilitarized, such as rockets and projectiles that include a casing and explosive as well as the chemical component.

“Really, that’s that part that really limits throughput a lot of time, the de-mating of the explosive from the chemical agent and the body,” Malone said.

But aboard the Cape Ray, the mission will be different. It is not munitions that are being demilitarized, but liquid chemical agents.

“This can be done fairly quickly because all of the material we are receiving are going to be in a bulk configuration,” Malone said. “It’s in large vessels, easily accessible, and for us it gives us a very high throughput.”

The chemical weapons also lend themselves to faster neutralization, he said.

 

Onboard the Cape Ray

Rick Jordan, captain of the Cape Ray, a mariner for 40 years now, and an employee of contractor Keystone Shipping Company, said for this mission his crew was expanded from 29 to 35. The additional six will support mainly what he calls “hotel services” aboard the ship.

“We’ve got some really good folks on here that know how to train, and we’ve been training them,” he said. “They’ve got all kinds of shipboard damage control, damage control training and that sort of thing.”

He also said there is plenty of support for spill response as well as for fire suppression.

Tanks such as these aboard the MV Cape Ray, will hold chemical reagents used to destroy chemical weapons during an upcoming mission in the Mediterranean.

“The whole key here is teamwork,” he said. “There has been an unbelievable amount of teamwork in this whole process, from the Maritime Administration, Military Sealift Command, to the Keystone Shipping Company. I’m humbled by what is going on here. We’ve had about three or four days of hard training together where we’ve been making mariners out of them, and they’ve been making chemical destruction folks out of us. And we’re going to continue to train. The whole trip will be a combination of production, training and being ready for the worst-case scenario.”

Jordan said he has not yet received sailing orders, but estimated the time to sail to the center of the Mediterranean Sea at about 10 days. The mission will last 90 days.

That 90-day mission has about 45 days built in for “down days” due to bad weather. So the mission could be shorter.

“Weather is the single most important factor as a mariner that I have got to consider,” Jordan said. “The good news for the Cape Ray is we have lots of things to mitigate weather on board.”

He said the ship is equipped with stabilizers to dampen any roll. He also said that because the ship really has no destination, but is rather meant to serve as a platform, he can navigate around weather if need be.

Sea trials for the mission have already begun, and the Cape Ray will do more sea trials before it departs on its mission in about two weeks. It’s expected the mission will include the neutralization of about 700 metric tons of chemical weapon agents. Those agents will be transferred to the Cape Ray from both Danish and Norwegian ships in a process expected to take about one or two days.

“Exactly where and how that process will take place has not been finalized yet,” Kendall said.

Additionally, U.S. Navy assets will provide security for the ship while it conducts operations, Kendall said.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>