Space

January 8, 2014

NASA’s Swift catches x-ray action at Milky Way’s center

Recent observations by NASA’s Swift spacecraft have provided scientists a unique glimpse into the activity at the center of our galaxy and led to the discovery of a rare celestial entity that may help them test predictions of Albert Einstein’s theory of general relativity.

This week, at the annual meeting of the American Astronomical Society in National Harbor, Md., scientists presented their research into images captured by Swift, explaining how these images will help decipher the physical nature of X-ray flares and enabled their discovery of a rare subclass of neutron star.

Swift’s seven-year campaign to monitor the center of the Milky Way has doubled the number of images available to scientists of bright X-ray flares occurring at the galaxy’s central black hole, dubbed Sagittarius A* (Sgr A*).

Sgr A* sits in the center of the Milky Way’s innermost region, 26,000 light-years away in the direction of the constellation Sagittarius. Its mass is at least 4 million times that of the sun. Despite its considerable size, it is not nearly as bright as it could be if it was more active, according to one expert.

“Given its size, this supermassive black hole is about a billion times fainter than it could be,” said Nathalie Degenaar, principal investigator on the Swift galactic center campaign and an astronomer at the University of Michigan in Ann Arbor. “Though it’s sedate now, it was quite active in the past and still regularly produces brief X-ray flares today.”

To better understand the black hole’s behavior over time, the Swift team began making regular observations of the Milky Way’s center in February 2006. Every few days, the Swift spacecraft turns toward the innermost region of the galaxy and takes a 17-minute-long snapshot with its X-ray Telescope (XRT).

To date, Swift’s XRT has detected six bright flares during which the black hole’s X-ray emission was as much as 150 times brighter for a couple of hours. These new detections enabled the team to estimate that similar flares occur every five to 10 days. Scientists will look at differences between the outbursts to decipher their physical nature.

The Swift XRT team expects 2014 to be a banner year for the campaign. A cold gas cloud named G2, about three times the mass of Earth, will pass near Sgr A* and already is being affected by tides from the black hole’s powerful gravitational field. Astronomers expect G2 will swing so close to the black hole during the second quarter of the year that it will heat up to the point where it produces X-rays.

If some of the cloud’s gas actually reaches Sgr A*, astronomers may witness a significant increase in activity from the black hole. The event will unfold over the next few years, giving scientists a front-row seat to study the phenomena.

“Astronomers around the world are eagerly awaiting the first sign that this interaction has begun,” said Jamie Kennea, a team member at Pennsylvania State University in University Park, Pa. “With the invaluable help of Swift, our monitoring program may well provide that indicator.”

Scientists saw what they thought was a sign in April, when Swift detected a powerful high-energy burst and a dramatic rise in the X-ray brightness of the Sgr A* region. They were excited to discover the activity came from separate source very near the black hole:† a rare subclass of neutron star.

A neutron star is the crushed core of a star destroyed by a supernova explosion, packing the equivalent mass of a half-million Earths into a sphere no wider than Washington. The neutron star, named SGR J1745-29, is a magnetar, meaning its magnetic field is thousands of times stronger than an average neutron star. Only 26 magnetars have been identified to date.

The discovery of SGR J1745-29 may aid scientists in their exploration of important properties of the Sgr A* black hole. As it spins, the magnetar emits regular X-ray and radio pulses. As it orbits Sgr A*, astronomers could detect subtle changes in the pulse timing because of the black hole’s gravitational field, a prediction of Einsteinís theory of general relativity.

“This long-term program has reaped many scientific rewards, and due to a combination of the spacecraft’s flexibility and the sensitivity of its XRT, Swift is the only satellite that can carry out such a campaign,” said Neil Gehrels, the mission’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Goddard manages Swift, which was launched in November 2004. Goddard operates the spacecraft in collaboration with Pennsylvania State University, the Los Alamos National Laboratory in New Mexico and Orbital Sciences Corp. in Dulles, Va. International collaborators are located in the United Kingdom and Italy. The mission includes contributions from Germany and Japan.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>