Business

January 15, 2014

Northrop Grumman awarded follow-on contract for U.S. Air Force’s GPS-challenged navigation, Geo-registration solution

Northrop Grumman has been awarded a phase three navigation system related contract from the U.S. Air Force Research Laboratory to continue improving geo-registration accuracy for positioning and pointing applications, even in GPS-denied conditions.

In the first two phases of the Maintain Accurate Geo-registration via Image-nav Compensation program, Northrop Grumman integrated georegistration algorithms in a vision-aided inertial navigation system. Having successfully demonstrated a prototype system in phase one and prepared for flight tests in phase two, the company will continue to develop capabilities for incorporating 3-D maps, improving performance and quantifying uncertainties associated with image-based navigation in phase three, as well as conduct additional test flights to prove real-time performance in realistic environments.

Geo-registration of data is critical for accurate interaction between systems, such as locating targets and handing off coordinates to other aircraft. Geo-registration of images involves pairing unreferenced images with the physical locations or exact coordinates of depicted items. This allows aircraft to create accurate maps by stitching together photos and correlating them with their world-based locations, which is useful for intelligence gathering and targeting.

“We continue to refine our new positioning and geo-registration solution to offer greater situational awareness to warfighters, especially in GPS-denied situations,” said Charles Volk, vice president, Advanced Navigation Systems business unit, Northrop Grumman.

Partnered with Toyon Research Corporation, Northrop Grumman is building on its experience in vision-aided inertial navigation under past programs such as Collaborative Robust Integrated Sensor Positioning, which matched image features and processed visual motion estimations for precise navigation without relying on GPS.

The MAGIC program’s objective is to develop and demonstrate advanced real-time geo-registration and navigation algorithms using a combination of cameras, an inertial measurement unit and any available GPS information. The program aims to capitalize on recent advances in the availability of low size, weight, power and cost camera systems that make the inclusion of camera information in navigation and georegistration systems for airborne vehicles a significant opportunity.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph by Mike Wilhelm

Enhanced F-35 Lightning II logistics system delivered to flight test locations

Lockheed Martin photograph by Mike Wilhelm United Kingdom and U.S. Air Force F-35 maintainers support ALIS testing at Lockheed Martin’s Orlando facility in August 2014. Before software is released, maintenance personnel try n...
 
 
NASA photographs by Ken Ulbrich

NASA intern helps develop UAS in the NAS Human-Systems Integration

NASA photographs by Ken Ulbrich NASA Armstrong summer intern Kassidy McLaughlin contemplates the Smart Eye Pro optical tracking display during a UAS in the NAS simulation. The system tracks a UAS pilotís eye movements, quantif...
 
 
Boeing photograph

Boeing completes design review for U.S. Air Force’s Talon HATE program

Boeing photograph The Talon HATE system is designed to initially be carried in a pod attached to Boeingís F-15C fighter aircraft as shown in this artistís concept. It combines information from fighter networks, national sourc...
 

 

Sikorsky Aircraft selects LORD Corporation’s UltraConductive Technology for the S-97 RAIDER

LORD Corporation announced Sept. 16 that Sikorsky Aircraft Corp., a subsidiary of United Technologies Corp. [NYSE:UTX], has selected its UltraConductive films and coatings for lightning strike protection for the S-97 RAIDERô program. The Sikorsky program requires LORD to provide technical support and education on how to use UltraConductive solutions across the Sikorsky platform for direct...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 
 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>