Business

January 15, 2014

Northrop Grumman awarded follow-on contract for U.S. Air Force’s GPS-challenged navigation, Geo-registration solution

Northrop Grumman has been awarded a phase three navigation system related contract from the U.S. Air Force Research Laboratory to continue improving geo-registration accuracy for positioning and pointing applications, even in GPS-denied conditions.

In the first two phases of the Maintain Accurate Geo-registration via Image-nav Compensation program, Northrop Grumman integrated georegistration algorithms in a vision-aided inertial navigation system. Having successfully demonstrated a prototype system in phase one and prepared for flight tests in phase two, the company will continue to develop capabilities for incorporating 3-D maps, improving performance and quantifying uncertainties associated with image-based navigation in phase three, as well as conduct additional test flights to prove real-time performance in realistic environments.

Geo-registration of data is critical for accurate interaction between systems, such as locating targets and handing off coordinates to other aircraft. Geo-registration of images involves pairing unreferenced images with the physical locations or exact coordinates of depicted items. This allows aircraft to create accurate maps by stitching together photos and correlating them with their world-based locations, which is useful for intelligence gathering and targeting.

“We continue to refine our new positioning and geo-registration solution to offer greater situational awareness to warfighters, especially in GPS-denied situations,” said Charles Volk, vice president, Advanced Navigation Systems business unit, Northrop Grumman.

Partnered with Toyon Research Corporation, Northrop Grumman is building on its experience in vision-aided inertial navigation under past programs such as Collaborative Robust Integrated Sensor Positioning, which matched image features and processed visual motion estimations for precise navigation without relying on GPS.

The MAGIC program’s objective is to develop and demonstrate advanced real-time geo-registration and navigation algorithms using a combination of cameras, an inertial measurement unit and any available GPS information. The program aims to capitalize on recent advances in the availability of low size, weight, power and cost camera systems that make the inclusion of camera information in navigation and georegistration systems for airborne vehicles a significant opportunity.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Turning up the heat

Lockheed Martin photograph Lockheed Martin ATHENA laser weapon system defeats a truck target by disabling the engine, demonstrating its military effectiveness against enemy ground vehicles. Latest evolution of Lockheed Martin l...
 
 

Sikorsky S-97 RAIDERô team begins final assembly of second aircraft

Sikorsky Aircraft Corp., a subsidiary of United Technologies Corp., announced March 4 the start of final assembly of the second S-97 RAIDERô helicopter at the company’s Development Flight Center. Along with a team of industry suppliers, Sikorsky is developing two RAIDERô prototypes to demonstrate the revolutionary new capabilities in improved maneuverability and flight speed. The...
 
 

Sikorsky awarded $8 million contract for Phase 1 ALIAS program

Sikorsky Aircraft Corp. announced March 4 that the Defense Advanced Research Projects Agency has awarded the company an $8 million contract for Phase 1 of the Aircrew Labor In-Cockpit Automation System program. Sikorsky Aircraft is a subsidiary of United Technologies Corp. The objective of DARPA’s ALIAS program is to develop and insert new automation into...
 

 

Global Hawk sees decrease in cost per flight hour amidst increased operational tempo

The U.S. Air Force RQ-4 Global Hawk high-altitude, long-endurance autonomous unmanned aircraft system had another remarkable year in 2014, with a significant decrease in cost per flight hour coupled with a sharp increase in flight hours. The Global Hawk program has brought the system’s cost per flight hour down to the point of being half...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 
 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>