Space

January 17, 2014

NASA tests Orion spacecraft parachute jettison over Arizona

Engineers testing the parachute system for NASA’s Orion spacecraft increased the complexity of their tests Jan. 16, adding the jettison of hardware designed to keep the capsule safe during flight.

The test was the first to give engineers in-air data on the performance of the system that jettisons Orion’s forward bay cover. The cover is a shell that fits over Orion’s crew module to protect the spacecraft during launch, orbital flight and re-entry into Earth’s atmosphere. When Orion returns from space, the cover must come off before the spacecraft’s parachutes can deploy. It must be jettisoned high above the ground in order for the parachutes to unfurl.

“This was a tough one,” said Mark Geyer, Orion program manager. “We’d done our homework, of course, but there were elements here that could only be tested in the air, with the entire system working together. It’s one of the most complicated tests that we’ll do, so we were all excited to see it work just as it was meant to.”

Previous parachute tests at the U.S. Army’s Yuma Proving Grounds in Arizona tested the performance of the parachutes in various conditions without a forward bay cover. Adding the cover and its jettison, along with the deployment of three additional parachutes to pull the cover away from the crew module and lower it to the ground, added a level of complexity to the testing.

“The parachute deployment and forward bay cover jettisons are two of the most difficult things for us to model on computers,” said Chris Johnson, project manager for the parachutes. “That’s why we test them so extensively. These systems have to work for Orion to make it safely to the ground, and every bit of data we can gather in tests like these helps us improve our models and gives us more confidence that when we do it for real, we can count on them.”

The forward bay cover is jettisoned using a thruster separation system built by Systima Technologies Inc. of Bothell, Wash. Lockheed Martin, prime contractor for Orion, tested the system for the first time on the ground in December. Two more ground tests will simulate different types of stresses on the cover, such as a potential parachute failure or loads on the spacecraft. NASA also plans a second airborne test with the forward bay cover to evaluate its performance with a failed parachute.

Orion will be put to its first test in space during its first mission, Exploration Flight Test-1(EFT-1), in September. EFT-1 will have an uncrewed Orion launch to an orbit 3,600 miles above Earth, well beyond the distance traveled by spacecraft built for humans in more than 40 years. After circling Earth twice, Orion will re-enter the atmosphere at speeds as fast as 20,000 mph before the parachute system slows it down for a splashdown in the Pacific Ocean.

For information about Orion and EFT-1, visit:  http://www.nasa.gov/orion.




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA/CXC/DSS/Magellan

NASA’s Chandra Observatory finds cosmic showers halt galaxy growth

Image courtesy of NASA/CXC/DSS/Magellan A study of over 200 galaxy clusters, including Abell 2597 shown here, with NASAís Chandra X-ray Observatory has revealed how an unusual form of cosmic precipitation stifles star formatio...
 
 
Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA spacecraft nears historic dwarf planet arrival

Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA NASA’s Dawn spacecraft took these images of dwarf planet Ceres from about 25,000 miles away Feb. 25, 2015. Ceres appears half in shadow because of the current position o...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 

 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 
 

NASA releases first global rainfall, snowfall map from new mission

Like a lead violin tuning an orchestra, the GPM Core Observatory – launched one year ago on Feb. 27, 2014, as a collaboration between NASA and the Japan Aerospace Exploration Agency – acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA’s Integrated Multi-satellite Retrievals for GPM...
 
 

New NASA Earth Science Missions expand view of our home planet

Four new NASA Earth-observing missions are collecting data from space with a fifth newly in orbit ñ after the busiest year of NASA Earth science launches in more than a decade. On Feb. 27, 2014, NASA and the Japan Aerospace Exploration Agency launched the Global Precipitation Measurement Core Observatory into space from Japan. Data from...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>