Space

January 27, 2014

Ball Aerospace completes integration of WorldView-3 spacecraft

ball-spacecraft
Ball Aerospace & Technologies Corp. has completed integration of WorldView-3, the next generation commercial remote-sensing satellite being built for DigitalGlobe, a leading global provider of high-resolution earth imagery solutions.

WorldView-3, the fourth remote-sensing satellite built for DigitalGlobe by Ball, is scheduled to launch from California’s Vandenberg Air Force Base in summer 2014.

With the imagery sensor and associated electronics now integrated, the completed satellite bus is ready for system-level performance testing, followed by thermal vacuum and environmental testing.

“Ball’s third commercial platform in the WorldView series will equip DigitalGlobe with advanced technologies to enhance its high-resolution imagery constellation,” said Cary Ludtke, vice president and general manager for Ball’s Operational Space business unit. “Ball and DigitalGlobe have proven to be a strong team for providing government and commercial customers with some of the highest quality and resolution satellite imagery available.”

WorldView-3 is the first multi-payload, super-spectral, high-resolution commercial satellite for earth observations and advanced geospatial solutions. Operating at an expected altitude of 617 km, WorldView-3 collects 31 cm panchromatic resolution, 1.24 m multispectral resolution, 3.7 m short-wave infrared (SWIR) resolution, and 30 m CAVIS resolution.

In addition to the satellite bus, Ball Aerospace is providing an atmospheric instrument called CAVIS, which stands for Cloud, Aerosol, Water Vapor, Ice, Snow. †CAVIS will monitor the atmosphere and provide correction data to improve WorldView-3′s imagery when it images earth objects through haze, soot, dust or other obscurants. CAVIS has also been integrated with the spacecraft.

“With each successive payload developed in partnership with Ball, DigitalGlobe has expanded the range of questions about the surface of the earth that can be answered with high-resolution satellite imaging,” said Dr. Walter Scott, executive vice president, chief technical officer and founder of DigitalGlobe. “DigitalGlobe prides itself on owning and operating one of the most agile and sophisticated constellations of high-resolution commercial earth imaging satellites in the world, currently capable of collecting over 1 billion km2 of† the highest quality imagery per year.

WorldView-3 follows in this pioneering tradition with innovations like CAVIS that continue to enable DigitalGlobe to lead the industry and help our customers see things never before possible.”

WorldView-3 builds upon WorldView-2 and WorldView-1 technology by carrying forward the satellites’ advanced Control Moment Gyroscopes (CMGs). The CMGs reorient a satellite over a desired collection area in 4-5 seconds, compared to 30-45 seconds needed for traditional reaction wheels.

WorldView-3 employs the Ball Configurable Platform BCP 5000 spacecraft, designed to handle the next-generation optical and synthetic aperture radar remote sensing payloads and is currently meeting or exceeding all performance specifications on the WorldView-2 satellite. The high-performance BCP 5000 has a design life of more than seven years, and provides a platform with increased power, resolution, agility, target selection, flexibility, transmission capability and data storage. Ball provided the BCP 5000 under a fixed-price contract.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 
 
NASA/MSFC image

NASA completes key review of world’s most powerful rocket

NASA/MSFC image Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimate...
 
 
Image courtesy of NASA, Z. Levay, G. Bacon (STScI)

NASA telescopes uncover early construction of giant galaxy

Image courtesy of NASA, Z. Levay, G. Bacon (STScI) Artist impression of a firestorm of star birth deep inside core of young, growing elliptical galaxy. Astronomers have for the first time caught a glimpse of the earliest stages...
 

 

Lockheed Martin, Electro Optic Systems to establish space debris tracking site

Under a new strategic cooperation agreement, Lockheed Martin and Electro Optic Systems Pty Ltd are developing a new space object tracking site in Western Australia that will paint a more detailed picture of space debris for both government and commercial customers. The site will use a combination of lasers and sensitive optical systems like those...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 
 

NASA awards contract option on test, operations support contract

NASA has exercised the first option to extend the period of performance of its Test and Operations Support Contract with Jacobs Technology Inc. of Tullahoma, Tenn., to Sept. 30, 2016. Jacobs Technology Inc. will provide continued overall management and implementation of ground systems capabilities, flight hardware processing and launch operations in support of the International...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>