Space

January 27, 2014

Ball Aerospace completes integration of WorldView-3 spacecraft

ball-spacecraft
Ball Aerospace & Technologies Corp. has completed integration of WorldView-3, the next generation commercial remote-sensing satellite being built for DigitalGlobe, a leading global provider of high-resolution earth imagery solutions.

WorldView-3, the fourth remote-sensing satellite built for DigitalGlobe by Ball, is scheduled to launch from California’s Vandenberg Air Force Base in summer 2014.

With the imagery sensor and associated electronics now integrated, the completed satellite bus is ready for system-level performance testing, followed by thermal vacuum and environmental testing.

“Ball’s third commercial platform in the WorldView series will equip DigitalGlobe with advanced technologies to enhance its high-resolution imagery constellation,” said Cary Ludtke, vice president and general manager for Ball’s Operational Space business unit. “Ball and DigitalGlobe have proven to be a strong team for providing government and commercial customers with some of the highest quality and resolution satellite imagery available.”

WorldView-3 is the first multi-payload, super-spectral, high-resolution commercial satellite for earth observations and advanced geospatial solutions. Operating at an expected altitude of 617 km, WorldView-3 collects 31 cm panchromatic resolution, 1.24 m multispectral resolution, 3.7 m short-wave infrared (SWIR) resolution, and 30 m CAVIS resolution.

In addition to the satellite bus, Ball Aerospace is providing an atmospheric instrument called CAVIS, which stands for Cloud, Aerosol, Water Vapor, Ice, Snow. †CAVIS will monitor the atmosphere and provide correction data to improve WorldView-3’s imagery when it images earth objects through haze, soot, dust or other obscurants. CAVIS has also been integrated with the spacecraft.

“With each successive payload developed in partnership with Ball, DigitalGlobe has expanded the range of questions about the surface of the earth that can be answered with high-resolution satellite imaging,” said Dr. Walter Scott, executive vice president, chief technical officer and founder of DigitalGlobe. “DigitalGlobe prides itself on owning and operating one of the most agile and sophisticated constellations of high-resolution commercial earth imaging satellites in the world, currently capable of collecting over 1 billion km2 of† the highest quality imagery per year.

WorldView-3 follows in this pioneering tradition with innovations like CAVIS that continue to enable DigitalGlobe to lead the industry and help our customers see things never before possible.”

WorldView-3 builds upon WorldView-2 and WorldView-1 technology by carrying forward the satellites’ advanced Control Moment Gyroscopes (CMGs). The CMGs reorient a satellite over a desired collection area in 4-5 seconds, compared to 30-45 seconds needed for traditional reaction wheels.

WorldView-3 employs the Ball Configurable Platform BCP 5000 spacecraft, designed to handle the next-generation optical and synthetic aperture radar remote sensing payloads and is currently meeting or exceeding all performance specifications on the WorldView-2 satellite. The high-performance BCP 5000 has a design life of more than seven years, and provides a platform with increased power, resolution, agility, target selection, flexibility, transmission capability and data storage. Ball provided the BCP 5000 under a fixed-price contract.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 2, 2015

News: Israel lobbies for more missile defense funds than Obama sought - For the second consecutive year, Israeli officials have asked the U.S. Congress to add more than $300 million to President Barack Obama’s budget request for their nation’s missile-defense programs.   Business: Inside one of the most intense, and unusual, Pentagon contracting wars - The much-anticipated...
 
 

News Briefs March 2, 2015

Italy resumes Navy exercise amid new tensions over Libya The Italian Navy is resuming exercises in the Mediterranean Sea, including near the coast of Libya, amid concerns about rapidly deteriorating security in the North African nation. The exercise began March 2 and includes anti-submarine, anti-aircraft and anti-ship training operations. The exercise was suspended for a...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 

 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 
 

GA-ASI, Sener team to offer Predator B to Spain

General Atomics Aeronautical Systems, Inc. and SENER, a leading Spanish engineering company, announced March 2 that they have signed a teaming agreement that promotes the use of the multi-mission Predator B® RPA to support Spain’s airborne surveillance and reconnaissance requirements.  GAASI is a leading manufacturer of Remotely Piloted Aircraft systems, radars, and electro-optic and relate...
 
 
raytheon-satellite

Raytheon’s ‘Blue Marble’ imaging sensor delivered on schedule

Raytheon has delivered a second Visible Infrared Imaging Radiometer Suite instrument to support the National Oceanic and Atmospheric Administration’s Joint Polar Satellite System mission. The second VIIRS unit will fly ab...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>