Space

January 29, 2014

NASA’s Hubble helps solve mystery of ultra-compact, burned-out galaxies

nasa-hubble
Astronomers using NASA’s Hubble Space Telescope and Europe’s Herschel Space Observatory have pieced together the evolutionary sequence of compact elliptical galaxies that erupted and burned out early in the history of the universe.

Enabled by Hubble’s infrared imaging capabilities, astronomers have assembled for the first time a representative spectroscopic sampling of ultra-compact, burned-out elliptical galaxies – galaxies whose star formation was finished when the universe was only 3 billion years old, less than a quarter of its current estimated age of 13.8 billion years.

The research, supported by NASA’s Spitzer Space Telescope and several ground-based telescopes, solves a 10-year-old mystery about the growth of the most massive elliptical galaxies we see today. It provides a clear picture of the formation of the most massive galaxies in the universe, from their initial burst of star formation through their development of dense stellar cores to their ultimate reality as giant ellipticals.

“We at last show how these compact galaxies can form, how it happened, and when it happened. This basically is the missing piece in the understanding of how the most massive galaxies formed, and how they evolved into the giant ellipticals of today,” said Sune Toft of the Dark Cosmology Center at the Niels Bohr Institute in Copenhagen, who is the leader of this study. “This had been a great mystery for many years because just 3 billion years after the big bang we see that half of the most massive galaxies have already completed their star formation.”

Through the research, astronomers have determined the compact ellipticals voraciously consumed the gas available for star formation, to the point they could not create new stars, and then merged with smaller galaxies to form giant ellipticals. The stars in the burned-out galaxies were packed 10 to 100 times more densely than in equally massive elliptical galaxies seen in the nearby universe today, and that surprised astronomers, according to Toft.

To develop the evolutionary sequence for ultra-compact, burned-out galaxies, Toft’s team assembled, for the first time, representative samples of two galaxy populations using the rich dataset in Hubble’s COSMOS (Cosmic Evolution Survey) program.

One group of galaxies is the compact ellipticals. The other group contains galaxies that are highly obscured with dust and undergoing rapid star formation at rates thousands of times faster than observed in the Milky Way. Starbursts in these dusty galaxies likely were ignited when two gas-rich galaxies collided. These galaxies are so dusty that they are almost invisible at optical wavelengths, but they shine bright at submillimeter wavelengths, where they were first identified nearly two decades ago by the Submillimeter Common-User Bolometer Array (SCUBA) camera on the James Clerk Maxwell Telescope in Hawaii.

Toft’s team started by constructing the first representative sample of compact elliptical galaxies with accurate sizes and spectroscopic redshifts, or distances, measured with Hubble’s Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) and 3D-HST programs. 3D-HST is a near-infrared spectroscopic survey to study the physical processes that shape galaxies in the distant universe. The astronomers combined these data with observations from the Subaru telescope in Hawaii and Spitzer. This allowed for accurate stellar age estimates, from which they concluded compact elliptical galaxies formed in intense starbursts inside the galaxies that preceded them by as long as two billion years.

Next, the team made the first representative sample of the most distant submillimeter galaxies using COSMOS data from the Hubble, Spitzer, and Herschel space telescopes, and ground-based telescopes such as Subaru, the James Clerk Maxwell Telescope, and the Submillimeter Array, all located in Hawaii. This multi-spectral information, stretching from optical light through submillimeter wavelengths, yielded a full suite of information about the sizes, stellar masses, star-formation rates, dust content, and precise distances of the dust-enshrouded galaxies that were present early in the universe.

When Toft’s team compared the samples of the two galaxy populations, it discovered an evolutionary link between the compact elliptical galaxies and the submillimeter galaxies. The observations show that the violent starbursts in the dusty galaxies had the same characteristics that would have been predicted for progenitors to the compact elliptical galaxies. Toft’s team also calculated the intense starburst activity inside the submillimeter galaxies lasted only about 40 million years before the interstellar gas supply was exhausted.




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Lockheed Martin successfully mates NOAA GOES-R satellite modules

Lockheed Martin photograph Lockheed Martin successfully mated together the large system and propulsion modules of the first GOES-R series weather satellite at the companyís Space Systems facilities near Denver, Colo. A team of...
 
 
Image courtesy of NASA/GSFC

NASA Mars spacecraft ready for Sept. 21 orbit insertion

NASA’s Mars Atmosphere and Volatile Evolution spacecraft is nearing its scheduled Sept. 21 insertion into Martian orbit after completing a 10-month interplanetary journey of 442 million miles. Flight Controllers at Lockheed M...
 
 

Lockheed Martin-built CLIO satellite successfully launched

The U.S. government’s CLIO satellite, designed and built by Lockheed Martin, was successfully launched today from Cape Canaveral Air Force Station, Fla. Lift-off occurred at 6:10 p.m., MDT, aboard a United Launch Alliance Atlas V launch vehicle. Initial contact with the satellite was confirmed at 9:08 p.m., MDT. The CLIO system is based on innovative...
 

 

ULA launches 60th Mission from Cape Canaveral

A United Launch Alliance Atlas V rocket carrying the CLIO mission for Lockheed Martin Space Systems Company launched at 8:10†p.m., EDT, Sept. 16 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Fla. “It is an honor to work with Lockheed Martin Space Systems Company and all of our mission partners to launch this...
 
 
Image courtesy of NASA, ESA, STScI-RCC14-41a

Hubble helps find smallest known galaxy containing supermassive black hole

Image courtesy of NASA, ESA, STScI-RCC14-41a Artist’s View of M60-UCD1 Black Hole.   Astronomers using data from NASA’s Hubble Space Telescope and ground observation have found an unlikely object in an improbable p...
 
 
Image courtesy of NASA/CXC/M. Weiss

NASA’s Chandra X-ray Observatory finds planet that makes star act deceptively old

Image courtesy of NASA/CXC/M. Weiss A new study from NASA’s Chandra X-ray Observatory shows that a giant exoplanet, WASP-18b, is making the star that it orbits very closely act much older than it actually is. This artist&...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>