Space

February 3, 2014

NASA’s next generation space telescope is coming together

The Near-Infrared Camera for NASA’s James Webb Space Telescope is seen in a cleanroom at the Lockheed Martin Advanced Technology Center in Palo Alto, Calif., where it was designed and built.

An infrared camera designed with University of Arizona and Lockheed Martin know-how, which will form the heart of NASA’s James Webb Space Telescope, has joined three other instruments at NASA’s Goddard Space Flight Center to be mounted in the nascent telescope structure.

The Near Infrared Camera (NIRCam) will function as the central imaging component of JWST, which will replace the Hubble Space Telescope toward the end of this decade. Designated one of the space agency’s three highest mission priorities, the Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

NIRCam was designed, built, and tested by a UA / Lockheed Martin team at the companyís Advanced Technology Center in Palo Alto, Calif., under the leadership of Principal Investigator Marcia Rieke. She is a Regents’ Professor at the UA Department of Astronomy/Steward Observatory. Lockheed Martin is responsible for the optical, mechanical, structural, thermal and electronic precision mechanisms and the control software of NIRCam, while its advanced infrared detector arrays come from Teledyne Imaging Systems.

NIRCam’s delivery to Goddard Space Flight Center marks the first time all of James Webb’s instruments have come together. “We are excited that NIRCam is about to be integrated with the Webb Telescope hardware,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director. “Next, it and the other instruments will be tested to prove their ability to function as a unit.”

“Completing all of the instruments is one of the most daunting milestones for a large science mission,” said George Rieke, a Regents’ Professor in the UA Departments of Astronomy and of Planetary Sciences. “Reaching this milestone keeps the telescope on schedule for launch in late 2018.”

As the space telescope’s prime camera, NIRCam will make JWST the most powerful space telescope ever built, enabling it to peer deeper into space and further back in time than any other instrument before. With its 6.5-meter (21-foot) mirror, JWST will allow observation of the most distant objects in the universe.

“The instrument operates out to wavelengths about ten times that of visible light, letting it search for the first galaxies. It is the cosmic redshift that has moved the outputs of these first light sources into the infrared where NIRCam operates. We will survey selected regions on the sky to find candidates; the other instruments on JWST can then probe these objects in detail to test if they really are that young,” Marcia Rieke explained. “The instrument can also peer through the clouds of gas and dust that hide the first stages when stars and planets are born and will provide insights to how planetary systems around distant stars form and evolve.”

“NIRCam embodies many cutting-edge technologies, such as the infrared detector arrays themselves, a complex optical system based on lenses rather than the mirrors used in most infrared instruments, and devices to measure the optical performance of the JWST telescope and allow adjustments to keep it operating correctly.”

Upon launch, JWST will be operated as an observatory open by competitive proposal to astronomers worldwide. The astronomy community is eagerly anticipating data from the mission, which is not only much larger than HST but covers the longer-wavelength infrared spectral range with unprecedented capabilities.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins engine test project for space launch system rocket

NASA photograph RS-25 rocket engine No. 0525 is positioned onto the A-1 Test Stand at NASAís Stennis Space Center in Mississippi preparation for a series of developmental tests. Engineers have taken a crucial step in preparing...
 
 

SSL selected to study asteroid retrieval for NASA

Space Systems/Loral, a leading provider of commercial satellites, announced July 18 that it was one of the companies selected by NASA to study system concepts and key technologies for NASA’s Asteroid Redirect Mission, which is expected to be a key part of the agency’s path to sending humans to Mars. SSL will conduct two studies;...
 
 
NASA image

NASA turns over next-gen air traffic management tool to FAA

NASA image As seen in this image, Terminal Sequencing and Spacing technology enables air traffic controllers to better manage the spacing between aircraft as they save both time and fuel and reducing emissions, flying more effi...
 

 
Image courtesy of NASA/JPL-Caltech, and SETI Institute

NASA seeks proposals for Europa mission science instruments

Image courtesy of NASA/JPL-Caltech, and SETI Institute Compiled from NASAís Galileo spacecraft data, this colorized surface image of Europa shows the blue-white terrains which indicate relatively pure water ice. Scientists are...
 
 

NASA announces early career faculty space tech research grants

NASA has selected seven university-led proposals for the study of innovative, early stage technologies that address high priority needs for America’s space program. The selected proposals for unique, disruptive, or transformational space technologies will address challenges in robotic mobility when traversing extreme terrain, in developing lightweight and multifunctional materials and str...
 
 
NASA photograph

NASA Armstrong recalls first moon landing, preps for ‘next giant leap’

NASA photograph In this 1967 NASA Flight Research Center photograph the Lunar Landing Research Vehicle (LLRV) No. 2 is viewed from the front. This photograph provides a good view of the pilot’s platform with the restricti...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>