Space

February 3, 2014

NASA’s next generation space telescope is coming together

The Near-Infrared Camera for NASA’s James Webb Space Telescope is seen in a cleanroom at the Lockheed Martin Advanced Technology Center in Palo Alto, Calif., where it was designed and built.

An infrared camera designed with University of Arizona and Lockheed Martin know-how, which will form the heart of NASA’s James Webb Space Telescope, has joined three other instruments at NASA’s Goddard Space Flight Center to be mounted in the nascent telescope structure.

The Near Infrared Camera (NIRCam) will function as the central imaging component of JWST, which will replace the Hubble Space Telescope toward the end of this decade. Designated one of the space agency’s three highest mission priorities, the Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

NIRCam was designed, built, and tested by a UA / Lockheed Martin team at the companyís Advanced Technology Center in Palo Alto, Calif., under the leadership of Principal Investigator Marcia Rieke. She is a Regents’ Professor at the UA Department of Astronomy/Steward Observatory. Lockheed Martin is responsible for the optical, mechanical, structural, thermal and electronic precision mechanisms and the control software of NIRCam, while its advanced infrared detector arrays come from Teledyne Imaging Systems.

NIRCam’s delivery to Goddard Space Flight Center marks the first time all of James Webb’s instruments have come together. “We are excited that NIRCam is about to be integrated with the Webb Telescope hardware,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director. “Next, it and the other instruments will be tested to prove their ability to function as a unit.”

“Completing all of the instruments is one of the most daunting milestones for a large science mission,” said George Rieke, a Regents’ Professor in the UA Departments of Astronomy and of Planetary Sciences. “Reaching this milestone keeps the telescope on schedule for launch in late 2018.”

As the space telescope’s prime camera, NIRCam will make JWST the most powerful space telescope ever built, enabling it to peer deeper into space and further back in time than any other instrument before. With its 6.5-meter (21-foot) mirror, JWST will allow observation of the most distant objects in the universe.

“The instrument operates out to wavelengths about ten times that of visible light, letting it search for the first galaxies. It is the cosmic redshift that has moved the outputs of these first light sources into the infrared where NIRCam operates. We will survey selected regions on the sky to find candidates; the other instruments on JWST can then probe these objects in detail to test if they really are that young,” Marcia Rieke explained. “The instrument can also peer through the clouds of gas and dust that hide the first stages when stars and planets are born and will provide insights to how planetary systems around distant stars form and evolve.”

“NIRCam embodies many cutting-edge technologies, such as the infrared detector arrays themselves, a complex optical system based on lenses rather than the mirrors used in most infrared instruments, and devices to measure the optical performance of the JWST telescope and allow adjustments to keep it operating correctly.”

Upon launch, JWST will be operated as an observatory open by competitive proposal to astronomers worldwide. The astronomy community is eagerly anticipating data from the mission, which is not only much larger than HST but covers the longer-wavelength infrared spectral range with unprecedented capabilities.




All of this week's top headlines to your email every Friday.


 
 

 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 
 
NASA photograph by Aubrey Gemignani

New crew arrives at space station to continue scientific research

NASA photograph by Aubrey Gemignani The Soyuz TMA-15M rocket launches from the Baikonur Cosmodrome in Kazakhstan Nov. 24, 2014 carrying Expedition 42 Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosm...
 
 
nasa-cube

NASA opens Cube Quest Challenge for largest-ever prize of $5 million

Registration now is open for NASA’s Cube Quest Challenge, the agency’s first in-space competition that offers the agency’s largest-ever prize purse. Competitors have a shot at a share of $5 million in prize money and ...
 

 
Lockheed Martin image

Ball Aerospace equips Orion mission with key avionics, antenna hardware

Lockheed Martin image Ball Aerospace & Technologies Corp. is providing the phased array antennas and flight test cameras to prime contractor Lockheed Martin for Orion’s Exploration Flight Test-1 (EFT-1), which is an u...
 
 
NASA photograph

NASA announces new opportunities for public participation in asteroid grand challenge

NASA photograph Team NOVA Took the Winning Hackathon Prize.   Ten new projects are providing opportunities for the public to participate in NASA’s Asteroid Grand Challenge, which accelerates the agency’s astero...
 
 
XCOR Aerospace photograph by Mike Massee

XCOR Aerospace announces latest milestone in ULA program

XCOR Aerospace photograph by Mike Massee The XCOR-ULA XR-5H25 LOX-Hydrogen Rocket Engine, fed by XCOR’s proprietary rocket propellant piston pump technology. MOJAVE, Calif. XCOR Aerospace announced Nov. 20 it has complete...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>