Space

February 5, 2014

Masten’s Xombie tests JPL’s G-FOLD precision landing software

Masten Space Systems’ Xombie rocket fires its landing thrusters as it touches down on a landing pad at the Mojave Air and Space Port. NASA’s Jet Propulsion Laboratory tested its G-FOLD algorithm that enables an autonomous
diversion to an alternate landing site on the Xombie in 2013.

With engineers and officials from NASA’s Jet Propulsion Laboratory watching, Masten Space Systems’ XA-0.1B “Xombie” took to the sky again in the fall of 2013. The flight on Sept. 20 was the conclusion of a test campaign to assess the performance of JPL’s Guidance for Fuel Optimal Large Diverts (G-FOLD) algorithm under mission conditions.

More ambitious than the previous flights, this test had the Xombie rocket initially travel diagonally away from the target landing site after launch. This simulated a worst-case spacecraft landing maneuver and forced the G-FOLD algorithm to calculate, in real time, a flight path that crossed over itself to reach the safe landing site, according to JPL’s Autonomous Descent and Ascent Powered-flight Testbed team.

“G-FOLD presents a dramatic improvement in our ability to execute large divert maneuvers with limited fuel,” said ADAPT team lead Martin Regehr.

According to team members, the accurately executed half-mile-long (0.8-kilometer), three-dimensional divert showed the potential of what G-FOLD could mean for future space missions. Compared to the software used to land NASA’s Mars Curiosity rover in August 2012, G-FOLD can provide six times more divert range for a lander of that class. Such a capability would be needed for landing on Europa or for human missions to Mars.

A member of Masten Space Systems’ ground crew makes final adjustments to the firm’s technology demonstrator rocket before liftoff on the final test flight of JPL’s G-FOLD spacecraft landing flight control software.

The ADAPT team believes that G-FOLD also might reduce the difficulty of future robotic missions to Mars, allowing rovers to land closer to features of interest instead of driving long distances to reach them. A future rover similar to Curiosity might be able to land right next to a target of scientific interest like Mount Sharp instead of driving for a year to get there.

Even though this is the culmination of the current round of testing, JPL’s ADAPT team still has far-reaching plans for G-FOLD and for further tests of other landing technologies.

To further enhance future mission capability, JPL plans to use ADAPT to demonstrate terrain-relative navigation using the Lander Vision System together with G-FOLD in 2014.

This effort was performed by JPL, based in Pasadena, Calif., with participation from the University of Texas at Austin; Masten Space Systems, Inc., Mojave, Calif.; and was supported by NASA’s Flight Opportunity Program, managed by NASA’s Dryden Flight Research Center, Edwards, Calif.

Click here for video feed

From left, Masten Space Systems’ Xombie technology demonstrator lifts off during the final flight test of JPL’s G-FOLD precision flight control algorithm, autonomously diverts to an alternate landing site, and descends for landing at the alternate site.




All of this week's top headlines to your email every Friday.


 
 

 

Year in space starts for one American, one Russian

Three crew members representing the United States and Russia are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m., EDT, March 27. NASA astronaut Scott Kelly and Russian Federal Space Agency (Roscosmos) cosmonaut Mikhail Kornienko will spend about a year living and working aboard the...
 
 
NASA photograph

Orion parachute testing conducted at AEDC NFAC facility

AEDC engineers were part of a test team that performed wind tunnel testing on the parachutes for NASA Orion spacecraft in January. The test team also consisted of NASA, Airborne Systems, Jacobs Engineering and NFAC personnel. P...
 
 

Ninth Boeing GPS IIF reaches orbit, sends first signals

Boeing Global Positioning System (GPS) IIF satellites are steadily replenishing the orbiting constellation, continuing to improve reliability and accuracy for users around the world. The ninth GPS IIF reached orbit about three hours, 20 minutes after launching today aboard a United Launch Alliance (ULA) Delta IV rocket from Cape Canaveral Air Force Station, Fla., and...
 

 
NASA/JPL-Caltech photograph

NASA asteroid hunter spacecraft data available to public

NASA/JPL-Caltech photograph The NEOWISE spacecraft viewed comet C/2014 Q2 (Lovejoy) for a second time on January 30, 2015, as the comet passed through the closest point to our sun along its 14,000-year orbit, at a solar distanc...
 
 
NASA and ESA image

NASA’s Hubble, Chandra find clues that may help identify dark matter

NASA and ESA image Here are images of six different galaxy clusters taken with NASA’s Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when t...
 
 
SOFIA

SOFIA finds missing link between supernovae, planet formation

NASA/CXO/Herschel/VLA/Lau et al SOFIA data reveal warm dust (white) surviving inside a supernova remnant. The SNR Sgr A East cloud is traced in X-rays (blue). Radio emission (red) shows expanding shock waves colliding with surr...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>