Space

February 5, 2014

Masten’s Xombie tests JPL’s G-FOLD precision landing software

Masten Space Systems’ Xombie rocket fires its landing thrusters as it touches down on a landing pad at the Mojave Air and Space Port. NASA’s Jet Propulsion Laboratory tested its G-FOLD algorithm that enables an autonomous
diversion to an alternate landing site on the Xombie in 2013.

With engineers and officials from NASA’s Jet Propulsion Laboratory watching, Masten Space Systems’ XA-0.1B “Xombie” took to the sky again in the fall of 2013. The flight on Sept. 20 was the conclusion of a test campaign to assess the performance of JPL’s Guidance for Fuel Optimal Large Diverts (G-FOLD) algorithm under mission conditions.

More ambitious than the previous flights, this test had the Xombie rocket initially travel diagonally away from the target landing site after launch. This simulated a worst-case spacecraft landing maneuver and forced the G-FOLD algorithm to calculate, in real time, a flight path that crossed over itself to reach the safe landing site, according to JPL’s Autonomous Descent and Ascent Powered-flight Testbed team.

“G-FOLD presents a dramatic improvement in our ability to execute large divert maneuvers with limited fuel,” said ADAPT team lead Martin Regehr.

According to team members, the accurately executed half-mile-long (0.8-kilometer), three-dimensional divert showed the potential of what G-FOLD could mean for future space missions. Compared to the software used to land NASA’s Mars Curiosity rover in August 2012, G-FOLD can provide six times more divert range for a lander of that class. Such a capability would be needed for landing on Europa or for human missions to Mars.

A member of Masten Space Systems’ ground crew makes final adjustments to the firm’s technology demonstrator rocket before liftoff on the final test flight of JPL’s G-FOLD spacecraft landing flight control software.

The ADAPT team believes that G-FOLD also might reduce the difficulty of future robotic missions to Mars, allowing rovers to land closer to features of interest instead of driving long distances to reach them. A future rover similar to Curiosity might be able to land right next to a target of scientific interest like Mount Sharp instead of driving for a year to get there.

Even though this is the culmination of the current round of testing, JPL’s ADAPT team still has far-reaching plans for G-FOLD and for further tests of other landing technologies.

To further enhance future mission capability, JPL plans to use ADAPT to demonstrate terrain-relative navigation using the Lander Vision System together with G-FOLD in 2014.

This effort was performed by JPL, based in Pasadena, Calif., with participation from the University of Texas at Austin; Masten Space Systems, Inc., Mojave, Calif.; and was supported by NASA’s Flight Opportunity Program, managed by NASA’s Dryden Flight Research Center, Edwards, Calif.

Click here for video feed

From left, Masten Space Systems’ Xombie technology demonstrator lifts off during the final flight test of JPL’s G-FOLD precision flight control algorithm, autonomously diverts to an alternate landing site, and descends for landing at the alternate site.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines November 26, 2014

News: When Hagel leaves, new SecDef faces big questions about the military’s future - President Obama’s new pick to run the Pentagon will face a dizzying set of challenges affecting the Defense Department’s mission, budget and culture. Who will be the next Secretary of Defense?- Following the Nov. 24 surprise announcement from the White House, the...
 
 

News Briefs November 26, 2014

Navy to decommission two more ships in Puget Sound The Navy recently decommissioned the guided missile frigate USS Ingraham at Everett, Wash. It will be towed to Bremerton and scrapped. The Daily Herald reports the Navy also plans to decommission another ship at the Everett homeport and also one stationed in Bremerton. Naval Station Everett...
 
 

NASA airborne campaigns tackle climate questions from Africa to Arctic

NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into how different aspects of the interconnected Earth system influence climate change. NASA photograph The DC-8 airborne laboratory is one of several NASA aircraft that will fly in support of five new investigations into...
 

 
Air Force photograph by Rick Goodfriend

16T Pitch Boom reactivated to support wind tunnel tests

Air Force photograph by Rick Goodfriend The Pitch Boom at the AEDC 16-foot transonic wind tunnel (16T) was recently reactivated. This model support system is used in conjunction with a roll mechanism to provide a combined pitch...
 
 

Northrop Grumman supports U.S. Air Force Minuteman missile test launch

Northrop Grumman recently supported the successful flight testing of the U.S. Air Force’s Minuteman III intercontinental ballistic missile weapon system. The operational flight test was conducted as part of the Air Force Global Strike Command’s Force Development Evaluation Program. This program demonstrates and supports assessment of the accuracy, availability and reliability of the...
 
 
army-detector

Scientists turn handheld JCAD into a dual-use chemical, explosives detector

Scientists at the U.S. Army Edgewood Chemical Biological Center at Aberdeen Proving Ground, Md., proved it is possible to teach an old dog new tricks by adding the ability to detect explosive materials to the Joint Chemical Age...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>