Space

February 26, 2014

Northrop Grumman’s modular space vehicle means better launch capabilities

This artist’s concept shows the Modular Space Vehicle that Northrop Grumman has delivered to the Operationally Responsive Space Office. The MSV is a plug-and-play spacecraft bus designed for fast configuration to reduce the time needed for launching small satellites.

REDONDO BEACH, Calif. – Battlefield commanders have long wanted satellites that can be assembled quickly and launched rapidly to meet immediate needs. Now they have that capability with the plug-and-play Modular Space Vehicle delivered Feb. 25 by Northrop Grumman.

The MSV is the first open systems spacecraft bus that supports a top priority of launching smaller, less expensive satellites in a matter of weeks for short-term missions – a capability commonly referred to as “responsive space.”

A Northrop Grumman-led team designed and built MSV in 30 months under a task order valued at approximately $50 million. The company delivered the MSV to the Operationally Responsive Space Office at Kirtland Air Force Base, N.M., which leads U.S. military efforts to shorten satellite development time.

“Because MSV is the first to implement space plug-and-play standards with simplified, standard hardware and software interfaces, the bus is loaded with flexibility,” said Doug Young, vice president, Missile Defense and Advanced Missions, Northrop Grumman Aerospace Systems. The MSV bus has the flexibility to:

– Operate in several orbits (Low Earth, Medium Earth and Geosynchronous);

– Be launched from a variety of launch vehicles – the Minotaur I and IV, Evolved Expendable Launch Vehicles (EELV) and the Falcon 9. MSV also is compatible with the EELV Secondary Payload Adapter-Grande.

– Accommodate payloads for a vast range of missions (radar imaging, missile warning, military communications and weather); and

– Perform on orbit anywhere from one to seven years or more.

“MSV provides ways for future development of rapid response space capabilities that will be timely, cost-efficient and flexible,” Young said. “A satellite bus contains the support structure and control subsystems that allow the payload to perform its mission.”

The open systems design approach has numerous other advantages, such as:

– Standard plug and play interfaces that allow payloads to be fully checked out prior to integration with the spacecraft using common test equipment for all missions. The same interfaces mean common test equipment can be used across all missions.

– A flexible power subsystem that can be tailored for multiple missions by adding or subtracting batteries and solar arrays, compared with traditional manufacturing methods requiring changes to baseline hardware designs.

– The ability to accommodate last-minute payload and bus component changes with minimal impact to cost and schedule.

Rapid development capabilities and expertise developed under MSV have been incorporated into the company’s Eagle line of spacecraft bus products as MSV/Eagle-1M TM. They were demonstrated previously in the same approach the company took for building and launching NASA’s successful Lunar CRater Observation and Sensing Satellite for the agency’s Ames Research Center, Moffett Field, Calif., in just 27 months.

The MSV bus was integrated and tested at Applied Technology Associates, Albuquerque, N.M., one of five core subcontractors on the company’s team. Team members also include Design Net Engineering, Golden, Colo.; Microcosm Inc., Hawthorne, Calif.; Advanced Defense Systems, Columbia, Md.; and Space Dynamics Laboratory, Utah State University, Logan, Utah.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 14, 2014

Business: U.S. Navy looks to leverage submarine work to keep costs down - The U.S. Navy hopes to save money and time by leveraging industry investments as it replaces its Ohio-class nuclear-armed submarines with the Virginia-class attack submarines now built by General Dynamics Corp and Huntington Ingalls Industries Inc.  Study raises red flags on California aerospace...
 
 

News Briefs April 14, 2014

U.S. Navy destroyer Zumwalt christened in Maine The U.S. Navy has christened the first ship of its newest class of destroyers, a 610-foot (186-meter)-long warship with advanced technologies and a stealthy design that will reduce its visibility on enemy radars. The warship bears the name of the late Adm. Elmo ìBudî Zumwalt, who became the...
 
 
Navy photograph by Seamn Edward Guttierrez III

Russian aircraft flies near U.S. Navy ship in Black Sea

Navy photograph by Seamn Edward Guttierrez III Sailors man the rails as the Arleigh Burke-class guided-missile destroyer USS Donald Cook arrives at Naval Station Rota, Spain, Feb. 11, 2014. Donald Cook is the first of four Arle...
 

 

45th Space Wing launches NRO Satellite on board Atlas V

The 45th Space Wing successfully launched a United Launch Alliance Atlas V rocket from Space Launch Complex 41, Vandenberg Air Force Base, Calif., at 1:45 p.m. April 10 carrying a classified national security payload. The payload was designed and built by the National Reconnaissance Office. “I am proud of the persistence and focus of the...
 
 

U.S. Air Force selects Cubic for Moroccan P5 air combat training system

Cubic Defense Systems, a subsidiary of Cubic Corporation announced April 11 it has been awarded a contract valued at more than $5 million from the U.S. Air Force to supply its P5 Combat Training System to the Moroccan Air Force. Morocco will join the United States Air Force, Navy, and Marine Corps, along with a...
 
 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>