Space

February 26, 2014

Northrop Grumman’s modular space vehicle means better launch capabilities

This artist’s concept shows the Modular Space Vehicle that Northrop Grumman has delivered to the Operationally Responsive Space Office. The MSV is a plug-and-play spacecraft bus designed for fast configuration to reduce the time needed for launching small satellites.

REDONDO BEACH, Calif. – Battlefield commanders have long wanted satellites that can be assembled quickly and launched rapidly to meet immediate needs. Now they have that capability with the plug-and-play Modular Space Vehicle delivered Feb. 25 by Northrop Grumman.

The MSV is the first open systems spacecraft bus that supports a top priority of launching smaller, less expensive satellites in a matter of weeks for short-term missions – a capability commonly referred to as “responsive space.”

A Northrop Grumman-led team designed and built MSV in 30 months under a task order valued at approximately $50 million. The company delivered the MSV to the Operationally Responsive Space Office at Kirtland Air Force Base, N.M., which leads U.S. military efforts to shorten satellite development time.

“Because MSV is the first to implement space plug-and-play standards with simplified, standard hardware and software interfaces, the bus is loaded with flexibility,” said Doug Young, vice president, Missile Defense and Advanced Missions, Northrop Grumman Aerospace Systems. The MSV bus has the flexibility to:

– Operate in several orbits (Low Earth, Medium Earth and Geosynchronous);

– Be launched from a variety of launch vehicles – the Minotaur I and IV, Evolved Expendable Launch Vehicles (EELV) and the Falcon 9. MSV also is compatible with the EELV Secondary Payload Adapter-Grande.

– Accommodate payloads for a vast range of missions (radar imaging, missile warning, military communications and weather); and

– Perform on orbit anywhere from one to seven years or more.

“MSV provides ways for future development of rapid response space capabilities that will be timely, cost-efficient and flexible,” Young said. “A satellite bus contains the support structure and control subsystems that allow the payload to perform its mission.”

The open systems design approach has numerous other advantages, such as:

– Standard plug and play interfaces that allow payloads to be fully checked out prior to integration with the spacecraft using common test equipment for all missions. The same interfaces mean common test equipment can be used across all missions.

– A flexible power subsystem that can be tailored for multiple missions by adding or subtracting batteries and solar arrays, compared with traditional manufacturing methods requiring changes to baseline hardware designs.

– The ability to accommodate last-minute payload and bus component changes with minimal impact to cost and schedule.

Rapid development capabilities and expertise developed under MSV have been incorporated into the company’s Eagle line of spacecraft bus products as MSV/Eagle-1M TM. They were demonstrated previously in the same approach the company took for building and launching NASA’s successful Lunar CRater Observation and Sensing Satellite for the agency’s Ames Research Center, Moffett Field, Calif., in just 27 months.

The MSV bus was integrated and tested at Applied Technology Associates, Albuquerque, N.M., one of five core subcontractors on the company’s team. Team members also include Design Net Engineering, Golden, Colo.; Microcosm Inc., Hawthorne, Calif.; Advanced Defense Systems, Columbia, Md.; and Space Dynamics Laboratory, Utah State University, Logan, Utah.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 18, 2014

News: U.S. mission in Iraq could expand, Pentagon official says - The mission for U.S. troops in Iraq to help Kurdish and Iraqi security forces in their fight against Islamic militants remains limited for now, but may expand after Iraqi leaders form a new government, a Pentagon spokesman said Aug. 19.   Business: Fuel deals top...
 
 

News Briefs August 20, 2014

Trials complete on fourth Coast Guard cutter Ingalls Shipbuilding in Pascagoula, Miss., has completed acceptance sea trials for the company’s fourth U.S. Coast Guard national security cutter, Hamilton. Jim French, Ingalls’ NSC program manager, tells The Mississippi Press) the Hamilton is scheduled to be delivered next month and commissioned on Dec. 6 in Charleston, South...
 
 
Army photograph by Sgt. Thomas Duval

Air Force, Army Aviation come together to complete vital mission in Egypt

Army photograph by Sgt. Thomas Duval Soldiers and airmen load a UH-60 Black Hawk into an Air Force C17 Globemaster III Aug. 19, 2104, at an old Israeli airstrip in the Sinai Peninsula of Egypt. The airstrip is now used by the M...
 

 
Air Force photograph by TSgt. Terri Praden

Joint effort validates ability to move Stryker vehicles via air

Air Force photograph by TSgt. Terri Praden An Army Stryker combat vehicle is guided into a C-17 Globemaster III during a 25th Infantry Division training exercise Aug. 13, 2014, at Joint Base Pearl Harbor-Hickam, Hawaii. The Str...
 
 
NASA image

Ozone-depleting compound persists, NASA research shows

NASA image Satellites observed the largest ozone hole over Antarctica in 2006. Purple and blue represent areas of low ozone concentrations in the atmosphere; yellow and red are areas of higher concentrations. NASA research show...
 
 

F-16V completes major capability milestone

The newest configuration of the F-16 Fighting Falcon, the F-16V, has reached a major capability milestone with the integration of a new Active Electronically Scanned Array radar. Completing this milestone on schedule demonstrates our ability to meet program commitments, said Roderick McLean, vice president and general manager of the F-16/F-22 Integrated Fighter Group at Lockheed...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>