Space

February 26, 2014

Northrop Grumman’s modular space vehicle means better launch capabilities

This artist’s concept shows the Modular Space Vehicle that Northrop Grumman has delivered to the Operationally Responsive Space Office. The MSV is a plug-and-play spacecraft bus designed for fast configuration to reduce the time needed for launching small satellites.

REDONDO BEACH, Calif. – Battlefield commanders have long wanted satellites that can be assembled quickly and launched rapidly to meet immediate needs. Now they have that capability with the plug-and-play Modular Space Vehicle delivered Feb. 25 by Northrop Grumman.

The MSV is the first open systems spacecraft bus that supports a top priority of launching smaller, less expensive satellites in a matter of weeks for short-term missions – a capability commonly referred to as “responsive space.”

A Northrop Grumman-led team designed and built MSV in 30 months under a task order valued at approximately $50 million. The company delivered the MSV to the Operationally Responsive Space Office at Kirtland Air Force Base, N.M., which leads U.S. military efforts to shorten satellite development time.

“Because MSV is the first to implement space plug-and-play standards with simplified, standard hardware and software interfaces, the bus is loaded with flexibility,” said Doug Young, vice president, Missile Defense and Advanced Missions, Northrop Grumman Aerospace Systems. The MSV bus has the flexibility to:

– Operate in several orbits (Low Earth, Medium Earth and Geosynchronous);

– Be launched from a variety of launch vehicles – the Minotaur I and IV, Evolved Expendable Launch Vehicles (EELV) and the Falcon 9. MSV also is compatible with the EELV Secondary Payload Adapter-Grande.

– Accommodate payloads for a vast range of missions (radar imaging, missile warning, military communications and weather); and

– Perform on orbit anywhere from one to seven years or more.

“MSV provides ways for future development of rapid response space capabilities that will be timely, cost-efficient and flexible,” Young said. “A satellite bus contains the support structure and control subsystems that allow the payload to perform its mission.”

The open systems design approach has numerous other advantages, such as:

– Standard plug and play interfaces that allow payloads to be fully checked out prior to integration with the spacecraft using common test equipment for all missions. The same interfaces mean common test equipment can be used across all missions.

– A flexible power subsystem that can be tailored for multiple missions by adding or subtracting batteries and solar arrays, compared with traditional manufacturing methods requiring changes to baseline hardware designs.

– The ability to accommodate last-minute payload and bus component changes with minimal impact to cost and schedule.

Rapid development capabilities and expertise developed under MSV have been incorporated into the company’s Eagle line of spacecraft bus products as MSV/Eagle-1M TM. They were demonstrated previously in the same approach the company took for building and launching NASA’s successful Lunar CRater Observation and Sensing Satellite for the agency’s Ames Research Center, Moffett Field, Calif., in just 27 months.

The MSV bus was integrated and tested at Applied Technology Associates, Albuquerque, N.M., one of five core subcontractors on the company’s team. Team members also include Design Net Engineering, Golden, Colo.; Microcosm Inc., Hawthorne, Calif.; Advanced Defense Systems, Columbia, Md.; and Space Dynamics Laboratory, Utah State University, Logan, Utah.




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of U.S. Bureau of Reclamation

Satellite study reveals parched U.S. West using up underground water

Image courtesy of U.S. Bureau of Reclamation The Colorado River Basin lost nearly 53 million acre feet of freshwater over the past nine years, according to a new study based on data from NASA’s GRACE mission. This is almost d...
 
 

NASA selects contract for mission support services at Ames

NASA has selected Wyle Laboratories, Inc., Houston, to support NASA’s flight programs and mission projects, providing support for multiple sustained project management, research and technology development capabilities that encompass all phases of mission and project lifecycles at the agency’s Ames Research Center in Moffett Field, Calif. The cost-plus-fixed-fee hybrid contract has a...
 
 
NASA, ESA, G. Bacon (STScI) and N. Madhusudhan (UC) image

Hubble finds three surprisingly dry exoplanets

NASA, ESA, G. Bacon (STScI) and N. Madhusudhan (UC) image This is an artistic illustration of the gas giant planet HD 209458b in the constellation Pegasus. To the surprise of astronomers, they have found much less water vapor i...
 

 
Air Force photograph

Budget cuts, growing threats affect space operations

Air Force photograph The Advanced Extremely High Frequency, or AEHF, system is a joint service satellite communications system that provides survivable, global, secure, protected and jam-resistant communications for high-priori...
 
 

NASA partners punctuate summer with spacecraft development advances

Spacecraft and rocket development is on pace this summer for NASA’s aerospace industry partners for the agency’s Commercial Crew Program as they progress through systems testing, review boards and quarterly sessions under their† Space Act Agreements with the agency. NASA engineers and specialists continue their review of the progress as the agency and partners move...
 
 

NASA seeks proposals for commercial Mars data relay satellites

NASA has issued a Request for Information to investigate the possibility of using commercial Mars-orbiting satellites to provide telecommunications capabilities for future robotic missions to the Red Planet. We are looking to broaden participation in the exploration of Mars to include new models for government and commercial partnerships, said John Grunsfeld, associate administrator of NASAR...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>