Space

February 26, 2014

Northrop Grumman’s modular space vehicle means better launch capabilities

This artist’s concept shows the Modular Space Vehicle that Northrop Grumman has delivered to the Operationally Responsive Space Office. The MSV is a plug-and-play spacecraft bus designed for fast configuration to reduce the time needed for launching small satellites.

REDONDO BEACH, Calif. – Battlefield commanders have long wanted satellites that can be assembled quickly and launched rapidly to meet immediate needs. Now they have that capability with the plug-and-play Modular Space Vehicle delivered Feb. 25 by Northrop Grumman.

The MSV is the first open systems spacecraft bus that supports a top priority of launching smaller, less expensive satellites in a matter of weeks for short-term missions – a capability commonly referred to as “responsive space.”

A Northrop Grumman-led team designed and built MSV in 30 months under a task order valued at approximately $50 million. The company delivered the MSV to the Operationally Responsive Space Office at Kirtland Air Force Base, N.M., which leads U.S. military efforts to shorten satellite development time.

“Because MSV is the first to implement space plug-and-play standards with simplified, standard hardware and software interfaces, the bus is loaded with flexibility,” said Doug Young, vice president, Missile Defense and Advanced Missions, Northrop Grumman Aerospace Systems. The MSV bus has the flexibility to:

– Operate in several orbits (Low Earth, Medium Earth and Geosynchronous);

– Be launched from a variety of launch vehicles – the Minotaur I and IV, Evolved Expendable Launch Vehicles (EELV) and the Falcon 9. MSV also is compatible with the EELV Secondary Payload Adapter-Grande.

– Accommodate payloads for a vast range of missions (radar imaging, missile warning, military communications and weather); and

– Perform on orbit anywhere from one to seven years or more.

“MSV provides ways for future development of rapid response space capabilities that will be timely, cost-efficient and flexible,” Young said. “A satellite bus contains the support structure and control subsystems that allow the payload to perform its mission.”

The open systems design approach has numerous other advantages, such as:

– Standard plug and play interfaces that allow payloads to be fully checked out prior to integration with the spacecraft using common test equipment for all missions. The same interfaces mean common test equipment can be used across all missions.

– A flexible power subsystem that can be tailored for multiple missions by adding or subtracting batteries and solar arrays, compared with traditional manufacturing methods requiring changes to baseline hardware designs.

– The ability to accommodate last-minute payload and bus component changes with minimal impact to cost and schedule.

Rapid development capabilities and expertise developed under MSV have been incorporated into the company’s Eagle line of spacecraft bus products as MSV/Eagle-1M TM. They were demonstrated previously in the same approach the company took for building and launching NASA’s successful Lunar CRater Observation and Sensing Satellite for the agency’s Ames Research Center, Moffett Field, Calif., in just 27 months.

The MSV bus was integrated and tested at Applied Technology Associates, Albuquerque, N.M., one of five core subcontractors on the company’s team. Team members also include Design Net Engineering, Golden, Colo.; Microcosm Inc., Hawthorne, Calif.; Advanced Defense Systems, Columbia, Md.; and Space Dynamics Laboratory, Utah State University, Logan, Utah.




All of this week's top headlines to your email every Friday.


 
 

 
NASA image by Eric Stern

NASA announces early stage innovations space tech research grants

NASA image by Eric Stern Advanced thermal protection materials modeling using the Direct Simulation Monte Carlo (DSMC) method simulates the flow through porous TPS materials. Research into these sorts of advanced technologies e...
 
 

NASA awards launch services contract for Ionospheric Connection Explorer

NASA has selected Orbital Sciences Corporation of Dulles, Va., to provide launch services for the Ionospheric Connection Explorer mission. ICON is targeted to launch in June 2017 from the Reagan Test Site on Kwajalein Atoll in the Republic of the Marshall Islands aboard a Pegasus XL launch vehicle from Orbital’s “Stargazer” L-1011 aircraft. The total...
 
 

NASA selects student teams for high-powered rocket challenge

NASA has selected eight teams from middle and high schools across the country to participate in the 2014-2015 NASA Student Launch Challenge, April 7-12, organized by NASA’s Marshall Space Flight Center in Huntsville, Ala. The Student Launch Challenge engages students in a research-based, experiential exploration activity. Teams participating in the challenge must design, build and...
 

 

Northrop Grumman awarded advanced technology microwave sounder JPSS

Northrop Grumman has been awarded a $121 million contract by NASA to build and deliver the third Advanced Technology Microwave Sounder for NOAA’s Joint Polar Satellite System. ATMS provides critical atmospheric temperature and moisture profiles to support weather forecasting. The instrument has 22 channels spanning the frequency band from 23.8 GHz to 183.3 GHz. Under...
 
 
NASA photograph by Jim Yungel

NASA DC-8 continues west Antarctic ice study

NASA photograph by Jim Yungel The Thurston Island calving front off of western Antarctica as seen from the window of NASA’s DC-8 flying observatory Nov. 5, 2014. NASA’s DC-8 flying laboratory has two weeks of suppor...
 
 
NASA photograph by Emmett Given

NASA opens registration for 2015 Exploration Rover Challenge

NASA photograph by Emmett Given Pedaling across a simulated alien landscape of rock, craters and shifting sand is one of the nearly 90 teams of high school, college and university students from across the United States and arou...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>