Space

February 26, 2014

Northrop Grumman’s modular space vehicle means better launch capabilities

This artist’s concept shows the Modular Space Vehicle that Northrop Grumman has delivered to the Operationally Responsive Space Office. The MSV is a plug-and-play spacecraft bus designed for fast configuration to reduce the time needed for launching small satellites.

REDONDO BEACH, Calif. – Battlefield commanders have long wanted satellites that can be assembled quickly and launched rapidly to meet immediate needs. Now they have that capability with the plug-and-play Modular Space Vehicle delivered Feb. 25 by Northrop Grumman.

The MSV is the first open systems spacecraft bus that supports a top priority of launching smaller, less expensive satellites in a matter of weeks for short-term missions – a capability commonly referred to as “responsive space.”

A Northrop Grumman-led team designed and built MSV in 30 months under a task order valued at approximately $50 million. The company delivered the MSV to the Operationally Responsive Space Office at Kirtland Air Force Base, N.M., which leads U.S. military efforts to shorten satellite development time.

“Because MSV is the first to implement space plug-and-play standards with simplified, standard hardware and software interfaces, the bus is loaded with flexibility,” said Doug Young, vice president, Missile Defense and Advanced Missions, Northrop Grumman Aerospace Systems. The MSV bus has the flexibility to:

– Operate in several orbits (Low Earth, Medium Earth and Geosynchronous);

– Be launched from a variety of launch vehicles – the Minotaur I and IV, Evolved Expendable Launch Vehicles (EELV) and the Falcon 9. MSV also is compatible with the EELV Secondary Payload Adapter-Grande.

– Accommodate payloads for a vast range of missions (radar imaging, missile warning, military communications and weather); and

– Perform on orbit anywhere from one to seven years or more.

“MSV provides ways for future development of rapid response space capabilities that will be timely, cost-efficient and flexible,” Young said. “A satellite bus contains the support structure and control subsystems that allow the payload to perform its mission.”

The open systems design approach has numerous other advantages, such as:

– Standard plug and play interfaces that allow payloads to be fully checked out prior to integration with the spacecraft using common test equipment for all missions. The same interfaces mean common test equipment can be used across all missions.

– A flexible power subsystem that can be tailored for multiple missions by adding or subtracting batteries and solar arrays, compared with traditional manufacturing methods requiring changes to baseline hardware designs.

– The ability to accommodate last-minute payload and bus component changes with minimal impact to cost and schedule.

Rapid development capabilities and expertise developed under MSV have been incorporated into the company’s Eagle line of spacecraft bus products as MSV/Eagle-1M TM. They were demonstrated previously in the same approach the company took for building and launching NASA’s successful Lunar CRater Observation and Sensing Satellite for the agency’s Ames Research Center, Moffett Field, Calif., in just 27 months.

The MSV bus was integrated and tested at Applied Technology Associates, Albuquerque, N.M., one of five core subcontractors on the company’s team. Team members also include Design Net Engineering, Golden, Colo.; Microcosm Inc., Hawthorne, Calif.; Advanced Defense Systems, Columbia, Md.; and Space Dynamics Laboratory, Utah State University, Logan, Utah.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>