Defense

March 3, 2014

AEDC team supports new measurement capability for turbine blades and vanes

Tags:
Dr. Robert Howard and Martha Simmons
Arnold AFB, Tenn.

This photo of a phosphor-coated dual vane section of a gas turbine engine, is positioned downstream of the AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The luminescence produced by the green laser beam and projected onto the phosphor-coated surface (left) is used to measure surface temperature.

The Air Force requires a new measurement capability to monitor the surface temperature of thermally-barrier-coated blades and vanes on the first turbine stage of military fighter engines. Accurate quantification of temperature will allow increased performance of military fighter aircraft.

A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor technique is being developed by NASA Glenn Research Center, Cleveland, Ohio in collaboration with AEDC and the Propulsion Instrumentation Working Group.

The measurement technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal.

During a week of testing, NASA demonstrated the TGP measurement technique on a phosphor-coated engine vane section mounted in the exhaust flow field of an AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The J85 afterburner exhaust was used to simulate the temperatures experienced by the first stage turbine.

The test program was conducted in two phases; the first phase demonstrated an imaging TGP technique in which the laser and detection camera were mounted off to the side of the exhaust flow. The laser beam was directed to the test article mounted on a water-cooled stand. The camera viewed the surface of the coated vane and recorded two images of luminescence decay at different times after each laser pulse.

Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine.

The second phase demonstrated an optical-probe that was inserted into the water-cooled mount to within an inch of the vane surface. This approach simulated insertion of the probe into the turbine section of an engine. The laser beam was transmitted through an optical fiber into the probe and focused onto a single spot on the vane surface. Optical fibers mounted around the laser fiber collected and transmitted the thermographic luminescence radiation to a photomultiplier detector located in the control room about 50 feet away from the engine. The fast response silicon detector recorded the temporal luminescence decay for each laser pulse. For both imaging and point measurement techniques, the temperature was deduced from the temporal decay; two images displaced in time for the imaging technique, and the continuous decay signal recorded for the single point probe technique. An eight micron-wavelength pyrometer system was used to independently monitor the temperature of the vane surface during both phases of testing.

Jeff Eldridge, the NASA Glenn Research Center project manager for the test, expressed appreciation for the excellent support provided by the ATA Technology staff and praised the J85 PRF as a great environment for research, particularly for transitioning laboratory technology to engine test maturity.

NASA successfully demonstrated the TGP temperature imaging technique under pseudo realistic engine conditions as well as a fast response, engine-insertable temperature probe that may be suitable for direct measurement of rotating blades’ temperatures.
Eldridge stated, “The combination of a unique test facility with excellent support makes testing at the Propulsion Research Facility a great value. Based on our experience, I hope we have an opportunity to test again in the future.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 15, 2014

News: Defense authorization bill heads to White House - Senate lawmakers finalized work on the $584.2 billion annual defense authorization bill Dec .12, putting in place a 1 percent pay raise for troops starting in January and limiting growth in housing allowance rates. Senators make final push for vets suicide-prevention bill - An effort to get a...
 
 

News Briefs December 15, 2014

Official: Afghan insurgents kill two U.S. troops An international military official has told The Associated Press that an insurgent attack on a convoy in eastern Afghanistan has killed two U.S. troops. The official says the attack happened by the Bagram air base in Parwan province near the capital, Kabul, late Dec. 12. The official spoke...
 
 
Air Force photograph by A1C Alexander Guerrero

317th AG delivers during massive JFE

Air Force photograph by A1C Alexander Guerrero Eleven C-130H Herculesí from various Air National Guard units and thirteen C-130J Super Herculesí from the 317th Airlift Group at Dyess Air Force Base, Texas, prepare to take off...
 

 
Boeing photograph

C-40A Clipper delivered to U.S. Naval Reserve ahead of schedule

Boeing photograph The Navy’s 13th C-40A departs Boeing facility in San Antonio, Texas, Nov. 21 and heads for Fleet Logistics Support Squadron (VR) 61, Naval Air Station Whidbey Island, Washington, one month ahead of schedule....
 
 
boeing-737-order

Boeing, Jetlines announce order for five 737 MAX 7s

  Boeing and Jetlines announced Dec. 15 an order for five 737 MAX 7s as the new Canadian ultra-low cost carrier builds its future fleet. The order, valued at $438 million at current list prices, includes purchase rights fo...
 
 

NASA tests software that may help increase flight efficiency, decrease aircraft noise

NASA researchers Dec. 12 began flight tests of computer software that shows promise in improving flight efficiency and reducing environmental impacts of aircraft, especially on communities around airports. Known as ASTAR, or Airborne Spacing for Terminal Arrival Routes, the software is designed to give pilots specific speed information and guidance so that planes can be...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>