Defense

March 3, 2014

AEDC team supports new measurement capability for turbine blades and vanes

Tags:
Dr. Robert Howard and Martha Simmons
Arnold AFB, Tenn.

This photo of a phosphor-coated dual vane section of a gas turbine engine, is positioned downstream of the AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The luminescence produced by the green laser beam and projected onto the phosphor-coated surface (left) is used to measure surface temperature.

The Air Force requires a new measurement capability to monitor the surface temperature of thermally-barrier-coated blades and vanes on the first turbine stage of military fighter engines. Accurate quantification of temperature will allow increased performance of military fighter aircraft.

A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor technique is being developed by NASA Glenn Research Center, Cleveland, Ohio in collaboration with AEDC and the Propulsion Instrumentation Working Group.

The measurement technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal.

During a week of testing, NASA demonstrated the TGP measurement technique on a phosphor-coated engine vane section mounted in the exhaust flow field of an AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The J85 afterburner exhaust was used to simulate the temperatures experienced by the first stage turbine.

The test program was conducted in two phases; the first phase demonstrated an imaging TGP technique in which the laser and detection camera were mounted off to the side of the exhaust flow. The laser beam was directed to the test article mounted on a water-cooled stand. The camera viewed the surface of the coated vane and recorded two images of luminescence decay at different times after each laser pulse.

Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine.

The second phase demonstrated an optical-probe that was inserted into the water-cooled mount to within an inch of the vane surface. This approach simulated insertion of the probe into the turbine section of an engine. The laser beam was transmitted through an optical fiber into the probe and focused onto a single spot on the vane surface. Optical fibers mounted around the laser fiber collected and transmitted the thermographic luminescence radiation to a photomultiplier detector located in the control room about 50 feet away from the engine. The fast response silicon detector recorded the temporal luminescence decay for each laser pulse. For both imaging and point measurement techniques, the temperature was deduced from the temporal decay; two images displaced in time for the imaging technique, and the continuous decay signal recorded for the single point probe technique. An eight micron-wavelength pyrometer system was used to independently monitor the temperature of the vane surface during both phases of testing.

Jeff Eldridge, the NASA Glenn Research Center project manager for the test, expressed appreciation for the excellent support provided by the ATA Technology staff and praised the J85 PRF as a great environment for research, particularly for transitioning laboratory technology to engine test maturity.

NASA successfully demonstrated the TGP temperature imaging technique under pseudo realistic engine conditions as well as a fast response, engine-insertable temperature probe that may be suitable for direct measurement of rotating blades’ temperatures.
Eldridge stated, “The combination of a unique test facility with excellent support makes testing at the Propulsion Research Facility a great value. Based on our experience, I hope we have an opportunity to test again in the future.”




All of this week's top headlines to your email every Friday.


 
 

 
navy-china

USS Fort Worth conducts CUES with Chinese Navy

The littoral combat ship USS Fort Worth (LCS 3) practiced the Code for Unplanned Encounters at Sea (CUES) with the People’s Liberation Army-Navy Jiangkai II frigate Hengshui (FFG 572) Feb. 23 enhancing the professional ma...
 
 

AEGIS tracks, simulates engagement of three short-range ballistic missiles

The Missile Defense Agency and sailors aboard the guided-missile destroyers USS Carney (DDG 64), USS Gonzalez (DDG 66), and USS Barry (DDG 52) successfully completed a flight test involving the Aegis Ballistic Missile Defense weapon system. At approximately 2:30 a.m., EST, Feb. 26, three short-range ballistic missile targets were launched near simultaneously from NASA’s Wallops...
 
 

DOD seeks novel ideas to shape its technological future

The Defense Department is seeking novel ideas to shape its future, and officials are looking to industry, small business, academia, start-ups, the public – anyone, really – to boost its ability to prevail against adversaries whose access to technology grows daily. The program, called the Long-Range Research and Development Plan, or LRRDP, began with an...
 

 

Air Force places 18 A-10 aircraft into ‘Backup Status’

The Air Force, with congressional authorization, will convert 18 primary combat-coded A-10 Thunderbolt II aircraft from active units and place them into Backup-Aircraft Inventory status with the possibility to convert another 18 at a later date in fiscal year 2015. The secretary of Defense has authorized the Air Force to place up to a total...
 
 

AFRL shape-changing materials make form a function

Air Force Research Laboratory research is shaping the future of aerospace. Through research into soft materials called liquid crystal elastomers, AFRL scientists have developed a method to locally program the mechanical response in polymer sheets without the use of actuators and traditional mechanical parts. This research (sponsored by the Air Force Office of Scientific Research)...
 
 
Sensor Concepts Inc. photograph

Air Force Research Labís handheld imaging tool expands aircraft inspection capability

Sensor Concepts Inc. photograph An operator demonstrates the portability of the handheld imaging tool. The technology provides maintainers the ability to evaluate aircraft in the field to ensure mission-readiness. When pilots c...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>