Defense

March 3, 2014

AEDC team supports new measurement capability for turbine blades and vanes

Tags:
Dr. Robert Howard and Martha Simmons
Arnold AFB, Tenn.

This photo of a phosphor-coated dual vane section of a gas turbine engine, is positioned downstream of the AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The luminescence produced by the green laser beam and projected onto the phosphor-coated surface (left) is used to measure surface temperature.

The Air Force requires a new measurement capability to monitor the surface temperature of thermally-barrier-coated blades and vanes on the first turbine stage of military fighter engines. Accurate quantification of temperature will allow increased performance of military fighter aircraft.

A method for measuring the surface temperature of blades and vanes in the hot section of turbine engines using a thermographic phosphor technique is being developed by NASA Glenn Research Center, Cleveland, Ohio in collaboration with AEDC and the Propulsion Instrumentation Working Group.

The measurement technique requires coating the blade and vane surfaces with a phosphor material appropriate for the targeted temperature range. The phosphor material is excited by a pulsed laser beam and the temperature determined from the time-rate-of-decay of the luminescence signal.

During a week of testing, NASA demonstrated the TGP measurement technique on a phosphor-coated engine vane section mounted in the exhaust flow field of an AEDC J85 engine at the University of Tennessee Space Institute Propulsion Research Facility. The J85 afterburner exhaust was used to simulate the temperatures experienced by the first stage turbine.

The test program was conducted in two phases; the first phase demonstrated an imaging TGP technique in which the laser and detection camera were mounted off to the side of the exhaust flow. The laser beam was directed to the test article mounted on a water-cooled stand. The camera viewed the surface of the coated vane and recorded two images of luminescence decay at different times after each laser pulse.

Thermographic phosphor techniques were demonstrated in the exhaust flow of an AEDC J85 afterburning engine at the University of Tennessee Space Institute Propulsion Research Facility. This photo shows the test article mounted behind the J85 engine.

The second phase demonstrated an optical-probe that was inserted into the water-cooled mount to within an inch of the vane surface. This approach simulated insertion of the probe into the turbine section of an engine. The laser beam was transmitted through an optical fiber into the probe and focused onto a single spot on the vane surface. Optical fibers mounted around the laser fiber collected and transmitted the thermographic luminescence radiation to a photomultiplier detector located in the control room about 50 feet away from the engine. The fast response silicon detector recorded the temporal luminescence decay for each laser pulse. For both imaging and point measurement techniques, the temperature was deduced from the temporal decay; two images displaced in time for the imaging technique, and the continuous decay signal recorded for the single point probe technique. An eight micron-wavelength pyrometer system was used to independently monitor the temperature of the vane surface during both phases of testing.

Jeff Eldridge, the NASA Glenn Research Center project manager for the test, expressed appreciation for the excellent support provided by the ATA Technology staff and praised the J85 PRF as a great environment for research, particularly for transitioning laboratory technology to engine test maturity.

NASA successfully demonstrated the TGP temperature imaging technique under pseudo realistic engine conditions as well as a fast response, engine-insertable temperature probe that may be suitable for direct measurement of rotating blades’ temperatures.
Eldridge stated, “The combination of a unique test facility with excellent support makes testing at the Propulsion Research Facility a great value. Based on our experience, I hope we have an opportunity to test again in the future.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 20, 2014

News: Navy grounds ‘Top Guns’ - The F/A-18s needs spare parts and in too many cases they’re being taken from brand new jets. This is a risk to national security and pilots’ lives.   Business: Boeing seeks revised schedule for U.S. aerial tanker - Boeing is revising its master schedule for developing the new U.S. Air Force...
 
 

News Briefs October 20, 2014

New military medical team to help with Ebola in U.S. Defense Secretary Chuck Hagel has ordered the military to prepare and train a 30-member medical support team that could provide short-term help to civilian health professionals if there are more Ebola cases in the United States. His spokesman, Rear Adm. John Kirby, says the team...
 
 

Dragon ‘fires up’ for flight

The Air Force and NATO are undergoing a cooperative development effort to upgrade the avionics and cockpit displays of AWACS aircraft belonging to the 552nd Air Control Wing at Tinker Air Force Base, Okla., and the NATO E-3 Sentrys from Geilenkirchen, Germany. The Diminishing Manufacturing Sources Replacement of Avionics for Global Operations and Navigation, otherwise...
 

 
Boeing photographs

Boeing-built X-37B successfully completes third flight

Unmanned spacecraft concludes record-setting 674-day mission   Boeing photograph A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg...
 
 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

AF to release small business research solicitations

The Air Force Small Business Innovation Research and Small Business Technology Transfer program office is set to release its fiscal year 2015 list of topics Oct. 22, on the SBIR/STTR website.  Small businesses and research institutions with expertise to address the topics’ technology challenges are encouraged to submit proposals. During 2014, the Defense Department SBIR...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>