Tech

March 7, 2014

Biosensors provide continuous war fighter monitoring for operational improvement

Even with rapid technological advancements in the modern warfighting environment, airmen remain the most important asset to the Air Force.

Human performance augmentation is an emerging concept based on the ability to sense and assess human health status in real-time using wearable biosensors, and enhance war fighter performance before mission safety, efficiency, and outcome is compromised.

Typical human performance monitoring is achieved by measuring physiological signatures such as heart rate, skin temperature, and blood pressure. Additionally, biological chemical/molecular information can be obtained from blood, sweat, urine, and saliva. Advances in molecular biology and biochemistry led to the discovery of small molecules, peptides, and proteins in these fluids associated with human performance.

AFRL researchers from the Materials and Manufacturing Directorate and 711th Human Performance Wing formed a multidisciplinary team to advance new technologies, mature manufacturing processes, and develop end-to-end systems to enable HPA.

Augmentation improves war fighter performance and could take a variety of forms ranging from pharmaceutical countermeasures to adaptive and autonomous systems. HPA requires new sensor devices that do not interfere with warfighter operations and can be

integrated with communication and information systems to satisfy broad mission needs.

Today’s biosensors are large and include complex supporting electronics for processing, communications, sample/fluid handling, user interfaces, and power supplies. The vision is to develop and integrate sensors into a flexible, wearable electronics platform (e.g., a flexible patch) that satisfies usability needs.

Many military systems incorporate information about the state of the equipment for mission planning/execution and asset sustainment. Including information about the state of the human provides new capability for both the operator and the military platform. For example, monitoring F-22 pilot blood oxygenation has allowed the Air Force to monitor the safety of both the pilot and the aircraft during flight.

Human Systems Integration, a parallel Air Force objective, integrates the warfighter into the surrounding weapons platform (human-machine teaming). Biosensors and HPA are enabling factors in the success of this technology.




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins sixth year of airborne Antarctic ice change study

NASA photograph by Michael Studinger NASA’s DC-8 flying laboratory is shown in its parking spot on the ramp at the Aeropuerto Presidente Carlos Ibáñez del Campo in Punta Arenas, Chile, after its transit flight from NASA...
 
 
NASA photograph by Patrick Rogers

Scientific balloon launch highlights NASA exhibit at Balloon Fiesta

NASA photograph by Jay Levine Magdi Said, technology manager for NASA’s Scientific Balloon Program office at NASA’s Wallops Flight Facility, explains elements of NASA’s use of science balloons.   A live t...
 
 
NASA photograph by John Sonntag

Preparing for Antarctic flights in California desert

NASA photograph by John Sonntag The constellation Ursa Major looms over a GPS-equipped survey vehicle and a ground station to its left at El Mirage Dry Lake. By comparing elevation readings from both GPS sources, researchers ca...
 

 
NASA photograph by Tom Tschida

NASA-pioneered Automatic Ground-Collision Avoidance System operational

NASA photograph by Jim Ross The U.S. Air Force’s F-16D Automatic Collision Avoidance Technology (ACAT) test aircraft banks over NASA’s Dryden (now Armstrong) Flight Research Center during a March 2009 flight.  ...
 
 
USF/WHOI/MBARI/NASA image

U.S. initiates prototype system to gauge national marine biodiversity

USF/WHOI/MBARI/NASA image NASA satellite data of the marine environment will be used in prototype marine biodiversity observation networks to be established in four U.S. locations, including the Florida Keys, pictured here. The...
 
 
NASA photograph by David C. Bowman

NASA helicopter test a smashing success

NASA photograph by David C. Bowman Technicians at NASA Langley pulled a helicopter 30 feet into the air before dropping it to test crashworthy systems.   The successful crash test of a former Marine helicopter could help l...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>