Tech

March 7, 2014

Biosensors provide continuous war fighter monitoring for operational improvement

Even with rapid technological advancements in the modern warfighting environment, airmen remain the most important asset to the Air Force.

Human performance augmentation is an emerging concept based on the ability to sense and assess human health status in real-time using wearable biosensors, and enhance war fighter performance before mission safety, efficiency, and outcome is compromised.

Typical human performance monitoring is achieved by measuring physiological signatures such as heart rate, skin temperature, and blood pressure. Additionally, biological chemical/molecular information can be obtained from blood, sweat, urine, and saliva. Advances in molecular biology and biochemistry led to the discovery of small molecules, peptides, and proteins in these fluids associated with human performance.

AFRL researchers from the Materials and Manufacturing Directorate and 711th Human Performance Wing formed a multidisciplinary team to advance new technologies, mature manufacturing processes, and develop end-to-end systems to enable HPA.

Augmentation improves war fighter performance and could take a variety of forms ranging from pharmaceutical countermeasures to adaptive and autonomous systems. HPA requires new sensor devices that do not interfere with warfighter operations and can be

integrated with communication and information systems to satisfy broad mission needs.

Today’s biosensors are large and include complex supporting electronics for processing, communications, sample/fluid handling, user interfaces, and power supplies. The vision is to develop and integrate sensors into a flexible, wearable electronics platform (e.g., a flexible patch) that satisfies usability needs.

Many military systems incorporate information about the state of the equipment for mission planning/execution and asset sustainment. Including information about the state of the human provides new capability for both the operator and the military platform. For example, monitoring F-22 pilot blood oxygenation has allowed the Air Force to monitor the safety of both the pilot and the aircraft during flight.

Human Systems Integration, a parallel Air Force objective, integrates the warfighter into the surrounding weapons platform (human-machine teaming). Biosensors and HPA are enabling factors in the success of this technology.




All of this week's top headlines to your email every Friday.


 
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAís associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 

 

Report: Major federal lab misused contract funds

Managers at one of the nation’s premier federal laboratories improperly used taxpayer funds to influence members of Congress and other officials as part of an effort to extend the lab’s $2.4 billion management contract, the U.S. Department of Energy’s Office of Inspector General said in a report Nov. 12. A review of documents determined that...
 
 

Teams announced for NASA 2015 robotics operations competition

Eight universities have advanced to the next round of “RASC-AL Robo-Ops,” a planetary rover robotics engineering competition sponsored by NASA and organized by the National Institute of Aerospace. The teams selected are California State University Long Beach, Massachusetts Institute of Technology, Cambridge; San Jose State University in California; University of Buffalo in New York;...
 
 
NASA photograph by Ken Ulbrich

NASA tests revolutionary shape changing aircraft flap for first time

NASA photograph by Ken Ulbrich For taxi testing Oct. 31, 2014, at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., the Adaptive Compliant Trailing Edge flap was extended to 20 degrees deflection. Fli...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>