Tech

March 7, 2014

Excalibur prototype extends reach of high-energy lasers

darpa-laser
High-energy lasers have the potential to benefit a variety of military missions, particularly as weapons or as high-bandwidth communications devices.

However, the massive size, weight and power requirements of legacy laser systems limit their use on many military platforms.

Even if SWaP limitations can be overcome, turbulence manifested as density fluctuations in the atmosphere increase laser beam size at the target, further limiting laser target irradiance and effectiveness over long distances.

Recently, DARPA’s Excalibur program successfully developed and employed a 21-element optical phased array with each array element driven by fiber laser amplifiers. This low power array was used to precisely hit a target 7 kilometers—more than 4 miles away. The OPA used in these experiments consisted of three identical clusters of seven tightly packed fiber lasers, with each cluster only 10 centimeters across.

“The success of this real-world test provides evidence of how far OPA lasers could surpass legacy lasers with conventional optics,” said Joseph Mangano, DARPA program manager. “It also bolsters arguments for this technology’s scalability and its suitability for high-power testing. DARPA is planning tests over the next three years to demonstrate capabilities at increasing power levels, ultimately up to 100 kilowatts—power levels otherwise difficult to achieve in such a small package.”

In addition to scalability, Excalibur demonstrated near-perfect correction of atmospheric turbulence—at levels well above that possible with conventional optics. While not typically noticeable over short distances, the atmosphere contains turbulent density fluctuations that can increase the divergence and reduce the uniformity of laser beams, leading to diffuse, shifted and splotchy laser endpoints, resulting in less power on the target. The recent Excalibur demonstration used an ultra-fast optimization algorithm to effectively “freeze” the deeply turbulent atmosphere, and then correcting the resulting static optically aberrated atmosphere in sub-milliseconds to maximize the laser irradiance delivered to the target. These experiments validated that the OPA could actively correct for even severe atmospheric distortion. The demonstration ran several tens of meters above the ground, where atmospheric effects can be most detrimental for Army, Navy and Marine Corp applications. In addition, these experiments demonstrated that OPAs might be important for correcting for the effects of boundary layer turbulence around aircraft platforms carrying laser systems.

The successful demonstration helps advance Excalibur’s goal of a 100-kilowatt-class laser system in a scalable, ultra-low SWaP OPA configuration compatible with existing weapon system platforms. Continued development and testing of Excalibur fiber optic laser arrays may one day lead to multi-100 kilowatt-class HELs in a package 10 times lighter and more compact than legacy high-power laser systems. Future tests aim to prove the OPA’s capabilities in even more intense environmental turbulence conditions and at higher powers. Such advances may one day offer improved reliability and performance for applications such as aircraft self-defense and ballistic missile defense.

“With power efficiencies of more than 35 percent and the near-perfect beam quality of fiber laser arrays, these systems can achieve the ultra-low SWaP required for deployment on a broad spectrum of platforms,” said Mangano. “Beyond laser weapons, this technology may also benefit low-power applications such as laser communications and the search for, and identification of, targets.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 15, 2014

News: Navy identifies pilot presumed dead in crash - A Navy fighter pilot presumed dead after two fighter jets crashed in the far western Pacific Ocean has been identified.   Business: Boeing eyes 737-700 solution for new JSTARS - Boeing is officially planning a variant of its 737-700 commercial jetliner as a competitor for the Air Force’s...
 
 

News Briefs September 15, 2014

Australia contributing planes for anti-IS campaign Australia is preparing to contribute 600 troops and up to 10 military aircraft to the increasingly aggressive campaign against the Islamic State extremists in Syria and Iraq, Prime Minister Tony Abbott said Sept. 14. Abbott said Australia was responding to a formal request from the United States for specific...
 
 
Courtesy graphic

Lockheed Martin conducts flight tests of aircraft laser turret for DARPA

AFRL photograph The Aero-adaptive Aero-optic Beam Control turret that Lockheed Martin is developing for the Defense Advanced Research Projects Agency and the Air Force Research Laboratory has completed initial flight testing. T...
 

 

Lockheed Martin advances live, virtual, constructive training in flight test

https://www.youtube.com/watch?feature=player_embedded&v=jvXmOW8L3mU Lockheed Martin successfully tested a new solution for integrated live, virtual and constructive training during a flight demonstration at the company’s Aeronautics facility in Fort Worth, Texas. During the flight test, a pilot flying in a live F-16 engaged in a synthetic training exercise with a pilot flying as wing...
 
 
Image courtesy of NASA/JPL-Caltech/Univ. of Arizona

NASA’s Mars Curiosity rover arrives at Martian mountain

NASA’s Mars Curiosity rover has reached the Red Planet’s Mount Sharp, a Mount-Rainier-size mountain at the center of the vast Gale Crater and the rover mission’s long-term prime destination. “Curiosity n...
 
 

Raytheon begins full rate production on TALON Laser Guided Rockets

Under a $117 million contract awarded to Raytheon, Raytheon Missile Systems has begun production of the TALON Laser Guided Rocket. In 2013, the Armed Forces General Headquarters of the United Arab Emirates awarded Tawazun a contract to procure the TALON Laser Guided Rocket. “Full rate production of the TALON LGR is a significant milestone for...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>